TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 20, No 3: June 2022

A hybrid soft bit flipping decoder algorithm for effective signal transmission and reception

Shaik Asif Hussain (Middle East College)
Jyothi Chinna Babu (Department of Electronics and Communication Engineering)
Raza Hasan (Malaysia University of Science and Technology)
Salman Mahmood (Malaysia University of Science and Technology)



Article Info

Publish Date
01 Jun 2022

Abstract

The Euclidean geometry (EG) based low-density parity check (LDPC) codes are enciphered and deciphered in various modes. These algorithms have the back-and-forth between decoding delay, and power usage, device unpredictability resources, and error rate efficacy are all available with these methods. As a result, the goal of this paper is to develop a comprehensive method to describe both soft and burst error bits for optimal data transfer. As a result, for EG-LDPC codes, a hybrid soft bit flipping (HSBF) decoder is suggested, which decreases decoding complications while improving message data transfer. A simulation model is formed using Xilinx synthesis report to study decoding latency, hardware usage, and power usage. A HSBF decoder is used in this paper, which accepts a 64-bit coding sequence and assigns 64 Adjustable nodes to it. It checks all customizable cluster connections and quantifies adjustable node values and actions. As a consequence of the data collected, our simulation model demonstrates that the HSBF technique outperforms soft bit flipping (SBF) algorithms. As a result, the techniques are ideal for usage in intermediate applications and as well as in cyber security processing technologies, medical applications.

Copyrights © 2022






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...