TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 20, No 3: June 2022

A novel fern-like lines detection using a hybrid of pre-trained convolutional neural network model and Frangi filter

Heri Pratikno (Universiti Malaysia Pahang)
Mohd Zamri Ibrahim (Universiti Malaysia Pahang)
Jusak Jusak (Universitas Dinamika)



Article Info

Publish Date
01 Jun 2022

Abstract

Full ferning is the peak of the formation of a salt crystallization line pattern shaped like a fern tree in a woman’s saliva at the time of ovulation. The main problem in this study is how to detect the shape of the salivary ferning line patterns that are transparent, irregular and the surface lighting is uneven. This study aims to detect transparent and irregular lines on the salivary ferning surface using a comparison of 15 pre-trained convolutional neural network models. To detect fern-like lines on transparent and irregular layers, a pre-processing stage using the Frangi filter is required. The pre-trained convolutional neural network model is a promising framework with high precision and accuracy for detecting fern-like lines in salivary ferning. The results of this study using the fixed learning rate model ResNet50 showed the best performance with an error rate of 4.37% and an accuracy of 95.63%. Meanwhile, in implementing the automatic learning rate, ResNet18 achieved the best results with an error rate of 1.99% and an accuracy of 98.01%. The results of visual detection of fern-like lines in salivary ferning using a patch size of 34×34 pixels indicate that the ResNet34 model gave the best appearance

Copyrights © 2022






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...