JATI (Jurnal Mahasiswa Teknik Informatika)
Vol. 6 No. 1 (2022): JATI Vol. 6 No. 1

PERBANDINGAN ARSITEKTUR LENET DAN GOOGLENET DALAM KLASIFIKASI DIABETIC RETINOPATHY PADA CITRA RETINA FUNDUS

Arif Faizin (Unknown)
Moh. Lutfi (Unknown)
Achmyatari (Unknown)



Article Info

Publish Date
15 Mar 2022

Abstract

Iridiologi merupakan salah satu bidang ilmu teknologi yang saat ini banyak diterapkan untuk mempermudah mendeteksi penyakit pada tubuh seseorang melalui retina mata, salah satunya adalah mendeteksi penyakit diabetik retinopati. Retina merupakan struktur paling penting pada mata yang memiliki angka tertinggi konsumsi oksigen dari jaringan dalam tubuh. Pada penelitian ini penulis mengkaji proses klasifikasi diabetik retinopati melalui retina mata. Algoritma yang bisa digunakan adalah Convolutional Neural Network (CNN) dengan arsitektur LeNet dan GoogleNet. Dataset pada penelitian ini diambil dari Kaggle dataset repository sebanyak 2500 data citra. Tujuan penelitian ini adalah membandingkan tingkat akurasi arsitektur LeNet dan GoogleNet dalam mengklasifikasi diabetic retinopathy untuk mengetahui model terbaik. Berdasarkan proses uji coba yang sudah dilakukan dengan pembagian data 80%-20%, model LeNet menghasilkan nilai akurasi terbaik sebesar 94.50% dengan jumlah batch size 16 dan epoch sebanyak 100. Sedangkan model GoogleNet menghailkan nilai akurasi terbaik sebesar 84.16% dengan jumlah batch size 4 dan epoch sebanyak 300

Copyrights © 2022






Journal Info

Abbrev

jati

Publisher

Subject

Computer Science & IT

Description

Adalah jurnal mahasiswa yang diterbitkan oleh Teknik Informatika Institut Teknologi Nasional Malang, sebagai media publikasi hasil Skripsi Mahasiswa Teknik Informatika ke khalayak luas, diterbitkan secara berkala 6 kali setahun pada bulan Februari, April, Juni, Agustus, Oktober, ...