IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 11, No 3: September 2022

An empirical study on machine learning algorithms for heart disease prediction

Tsehay Admassu Assegie (Injibara University)
Prasanna Kumar Rangarajan (Amrita Vishwa Vidyapeetham)
Napa Komal Kumar (St. Peter’s Institute of Higher Education and Research)
Dhamodaran Vigneswari (KCG College of Technology)



Article Info

Publish Date
01 Sep 2022

Abstract

In recent years, machine learning is attaining higher precision and accuracy in clinical heart disease dataset classification. However, literature shows that the quality of heart disease feature used for the training model has a significant impact on the outcome of the predictive model. Thus, this study focuses on exploring the impact of the quality of heart disease features on the performance of the machine learning model on heart disease prediction by employing recursive feature elimination with cross-validation (RFECV). Furthermore, the study explores heart disease features with a significant effect on model output. The dataset for experimentation is obtained from the University of California Irvine (UCI) machine learning dataset. The experiment is implemented using a support vector machine (SVM), logistic regression (LR), decision tree (DT), and random forest (RF) are employed. The performance of the SVM, LR, DT, and RF models. The result appears to prove that the quality of the feature significantly affects the performance of the model. Overall, the experiment proves that RF outperforms as compared to other algorithms. In conclusion, the predictive accuracy of 99.7% is achieved with RF.

Copyrights © 2022






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...