Napa Komal Kumar
St. Peter’s Institute of Higher Education and Research

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

A hybrid approach to medical decision-making: diagnosis of heart disease with machine-learning model Tamilarasi Suresh; Tsehay Admassu Assegie; Subhashni Rajkumar; Napa Komal Kumar
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1831-1838

Abstract

Heart disease is one of the most widely spreading and deadliest diseases across the world. In this study, we have proposed hybrid model for heart disease prediction by employing random forest and support vector machine. With random forest, iterative feature elimination is carried out to select heart disease features that improves predictive outcome of support vector machine for heart disease prediction. Experiment is conducted on the proposed model using test set and the experimental result evidently appears to prove that the performance of the proposed hybrid model is better as compared to an individual random forest and support vector machine. Overall, we have developed more accurate and computationally efficient model for heart disease prediction with accuracy of 98.3%. Moreover, experiment is conducted to analyze the effect of regularization parameter (C) and gamma on the performance of support vector machine. The experimental result evidently reveals that support vector machine is very sensitive to C and gamma.
An empirical study on machine learning algorithms for heart disease prediction Tsehay Admassu Assegie; Prasanna Kumar Rangarajan; Napa Komal Kumar; Dhamodaran Vigneswari
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 3: September 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i3.pp1066-1073

Abstract

In recent years, machine learning is attaining higher precision and accuracy in clinical heart disease dataset classification. However, literature shows that the quality of heart disease feature used for the training model has a significant impact on the outcome of the predictive model. Thus, this study focuses on exploring the impact of the quality of heart disease features on the performance of the machine learning model on heart disease prediction by employing recursive feature elimination with cross-validation (RFECV). Furthermore, the study explores heart disease features with a significant effect on model output. The dataset for experimentation is obtained from the University of California Irvine (UCI) machine learning dataset. The experiment is implemented using a support vector machine (SVM), logistic regression (LR), decision tree (DT), and random forest (RF) are employed. The performance of the SVM, LR, DT, and RF models. The result appears to prove that the quality of the feature significantly affects the performance of the model. Overall, the experiment proves that RF outperforms as compared to other algorithms. In conclusion, the predictive accuracy of 99.7% is achieved with RF.
Random forest and support vector machine based hybrid liver disease detection Tsehay Admassu Assegie; Rajkumar Subhashni; Napa Komal Kumar; Jijendira Prasath Manivannan; Pradeep Duraisamy; Minychil Fentahun Engidaye
Bulletin of Electrical Engineering and Informatics Vol 11, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i3.3787

Abstract

This study develops an automated liver disease detection system using a support vector machine and random forest detection techniques. These techniques are trained on data containing the information collected from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted between 1974 and 1984. The proposed system can detect the presence of liver disease in the test set. The random forest model is used for recursive feature elimination at the pre-processing stage and the support vector machine is trained on the optimal feature set. The experimental result shows that the proposed support vector machine (SVM) model has achieved 78.3% accuracy.