JURNAL MATEMATIKA STATISTIKA DAN KOMPUTASI
Vol. 18 No. 3 (2022): MAY, 2022

Analisis Misklasifikasi Data Akreditasi Sekolah Dasar Di Kota Ambon Menggunakan Metode Multivariate Adaptive Regression Spline

Sarah Risambessy (Unknown)
Salmon Notje Aulele (Unknown)
Ferry Kondo Lembang (Universitas Pattimura)



Article Info

Publish Date
15 May 2022

Abstract

Many classification methods have been developed, one of which is the Multivariate Adaptive Regression Spline (MARS) method. MARS is one of the classification methods in the form of a combination of Recursive Partitioning Regression (RPR) and the spline method that is able to process high-dimensional and large-sized data and process data with continuous or binary response variables. The purpose of this study was to measure the misclassification of elementary school accreditation in Ambon city using the MARS method. This study uses accreditation data with the results of eight components of accreditation in elementary schools that have accreditation A (group 1) and accreditation B (group 2) in Ambon city. To evaluate the classification method used the APER classification error measure. The best classification result from the MARS method is when using a combination of BF=32, MI=3, MO=1 because it produces a minimum Generalized Cross Validation (GCV) of 0.066 and information is obtained that the correct classification data is 181 and the misclassified data is 10. Based on the results of the analysis, the size of the APER classification error is 5.23%, which can be said that the MARS method is good or statistically significant for classifying elementary schools in Ambon City based on their accreditation rating.  

Copyrights © 2022






Journal Info

Abbrev

jmsk

Publisher

Subject

Mathematics

Description

Jurnal ini mempublikasikan paper-paper original hasil-hasil penelitian dibidang Matematika, Statistika dan Komputasi ...