Joutica : Journal of Informatic Unisla
Vol 5, No 1 (2020)

PERBANDINGAN METODE REGRESI LINEAR DAN NEURAL NETWORK BACKPROPAGATION DALAM PREDIKSI NILAI UJIAN NASIONAL SISWA SMP MENGGUNAKAN SOFTWARE R

Masruroh Masruroh (Fakultas Teknik-Universitas Islam Lamongan)



Article Info

Publish Date
31 Mar 2020

Abstract

Metode regresi linear dan neural network backpropagation merupakan metode yang kerap digunakan dalam model prediksi. Penelitian ini bertujuan untuk membandingkan akurasi metode regresi linear dan backpropagation dalam prediksi nilai Ujian Nasional siswa SMP. Data yang digunakan berupa data nilai ujian akhir semester dan ujian sekolah sebagai input dan nilai ujian nasional sebagai output. Data didapatkan dari SMPN 1 dan SMPN 2 Lamongan.. Jumlah dataset sebanyak 701 dibagi menjadi 75% data training dan 25% data testing. Simulasi prediksi dilakukan menggunakan software R. Parameter akurasi yang digunakan adalah Root Mean Squared Error (RMSE) dan Mean Absolute Percentage Error (MAPE). Hasil penelitian menunjukkan model prediksi menggunakan metode regresi linear menghasilkan RMSE sebesar 9,04 dan MAPE sebesar 3,94%, sedangkan model prediksi menggunakan backpropagation menghasilkan RMSE sebesar 7,28 dan MAPE sebesar 0,55%. Dengan demikian dalam penelitian ini metode neural network backpropagation memiliki akurasi yang lebih baik dalam prediksi nilai Ujian Nasional siswa SMP.

Copyrights © 2020






Journal Info

Abbrev

informatika

Publisher

Subject

Computer Science & IT Control & Systems Engineering

Description

Topics cover the following areas (but are not limited to): Enterprise Systems (ES) Enterprise Resource Planning Business Process Management Customer Relationship Management Marketing Analytics System Dynamics E-business and e-Commerce Marketing Analytics Supply Chain Management and Logistics ...