Journal of Information Technology and Computer Science (JOINTECS)
Vol 7, No 2 (2022)

Implementasi Metode CNN Multi-Scale Input dan Multi-Feature Network untuk Dugaan Kanker Payudara

Ghifari Prameswari Natakusumah (Universitas Gunadarma)
Ernastuti Ernastuti (Universitas Gunadarma)



Article Info

Publish Date
31 May 2022

Abstract

Menurut WHO, kanker payudara merupakan penyumbang angka morbiditas tertinggi pada tahun 2020 dengan jumlah 2,26 juta kasus. Dalam menentukan prognosis pasien diperlukan berbagai pemeriksaan, salah satunya adalah analisis histopatologi. Namun, analisis histopatologi adalah proses yang relatif melelahkan dan memakan waktu. Dengan berkembangnya metode deep learning, ilmu computer vision dapat diterapkan untuk pendeteksian kanker pada citra medis, yang diharapkan dapat membantu meningkatkan akurasi prognosis dan kecepatan identifikasi yang dilakukan oleh para ahli. Berdasarkan pengetahuan tersebut, penelitian ini bertujuan untuk menerapkan klasifikasi multi-kelas (normal, benign, in situ, invasif) dan prediksi citra jaringan digital normal atau telah diduga memiliki sel kanker menggunakan Convolutional Neural Network dengan multi-scale input dan multi-feature network (CNN-G). Dataset yang digunakan adalah 400 data citra jaringan payudara yang diklasifikasikan menjadi empat kelas dan diberi label oleh ahli patologi. Hasil akurasi yang diperoleh dari pelatihan adalah 0,5375~0,54 dan berhasil membuat peningkatan jika dibandingkan dengan model tunggal (CNN14, CNN42, CNN84). Metode evaluasi model lain yang dilakukan adalah confusion matrix, precision, recall, dan f-1 score. 

Copyrights © 2022






Journal Info

Abbrev

jointecs

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management Electrical & Electronics Engineering Engineering Languange, Linguistic, Communication & Media Library & Information Science Mathematics

Description

JOINTECS terbit 2 (dua) kali dalam setahun, yaitu pada bulan Agustus dan Pebruari dengan versi cetak p-ISSN: 2541-3619 dan versi elektronik dengan sistem OJS dengan e-ISSN: 2541-6448. (medio online) yang mewajibkan setiap naskah yang masuk, proses review, editing, sampai pada publikasi, dan semua ...