Claim Missing Document
Check
Articles

Found 18 Documents
Search

EXTENDED LUCAS TUBE: GRAF HAMILTONIAN BARU ., Ernastuti; Kerami, Djati; Widjaya, Belawati H
Journal of the Indonesian Mathematical Society Volume 14 Number 1 (April 2008)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.14.1.59.25-35

Abstract

A Hamiltonian cycle in a connected graph G is defined as a closed walk that traverses every vertex of G exactly once, except the starting vertex at which the walk also terminates. If an edge from a Hamiltonian cycle is removed, it forms a path calleda Hamiltonian path. A graph G is called Hamiltonian if there is a Hamiltonian cyclein G. It is known that every hypercube graph is Hamiltonian. But when one or more vertices are removed from a hypercube graph, will it still be Hamiltonian? Some induced subgraphs of a hypercube graph such as the Fibonacci cube (FC), the extended Fibonaccicube (EFC), and the Lucas cube (LC) have been introduced and their Hamiltonicities have been investigated. Research results showed that less than a third of FC graphs are Hamiltonian although all of them have Hamiltonian path. All EFC graphs are Hamiltonian and none of LC graphs is Hamiltonian although some still have Hamiltonian paths.This paper introduces another subgraph of a hypercube graph called the Extended Lucas Cube (ELC). The ELC is shown to be Hamiltonian by using the approach of k-Gray Code and Bipartition Property.DOI : http://dx.doi.org/10.22342/jims.14.1.59.25-35
SISTEM IDENTIFIKASI POLA BUJUR SANGKAR DENGAN METODE KODE BERANTAI Ernastuti, Ernastuti
Majalah Ilmiah Matematika Komputer 2006: MAJALAH MATEMATIKA KOMPUTER EDISI DESEMBER
Publisher : Majalah Ilmiah Matematika Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (728.878 KB)

Abstract

Citra biner adalah citra yang hanya mempunyai 2 nilai derajat keabuan yaitu hitamdan putih. Pada tulisan ini aplikasi citra biner dibutuhkan untuk keperluanmerepresentasikan citra objek bujur sangkar yang akan diidentifikasi. Sistemidentifikasi bujur sangkar mempunyai 2 buah fase yaitu fase pelatihan dan fasepengenalan. Pada fase pelatihan, beberapa contoh citra objek dipelajari dandiamati untuk menentukan fitur/ciri yang akan digunakan pada proses pengenalanserta prosedur klasifikasinya. Pada fase pengenalan, objek diambil fitur/cirinyadengan metode kode berantai 8-arah, kemudian ditentukan kelas kelompoknya.Objek input yang hendak dicari identitasnya , ditransformasikan ke dalam bentukfitur berupa barisan kode berantai, yang selanjutnya dengan mencocokkan urutankode berantainya dengan urutan kode yang ada dalam himpunan pelatihan, makaidentitasnya akan dikenali. Pengamatan yang dilakukan pada 32 citra objekdalam fase pelatihan mendapatkan suatu nilai sebagai fitur bujur sangkar dengantingkat kepercayaan 95%. Program yang digunakan untuk implementasi sistem iniadalah MATLAS ver 7.0. Hasil pengamatan menunjukkan pola bujur sangkarmempunyai ciri, bila objek diputar untuk setiap rotasi : 0°. 1°, 2°, ... ,360° maka (1)untuk i = 1,2, ... ,8 Hist(i] mempunyai tinggi bervariasi dengan batas toleransi :S 5,dan (2) untuk i =1,3,5,7, Hist(i] mempunyai tinggi yang sama atau hampir samadengan batas toleransi :S 1, dan untuk i=2,4,6,8 ,Hist[i) juga mempunyai tinggiyang sama atau hampir sama dengan batas toleransi $ 1.Kata kunci : Citra Siner, bujur sangkar, kode berantai, fasE' pelatihan, fasepengenalan, deteksi tepi
PERBANDINGAN TRANSFORMASI DERET FOURIER DAN TRANSFORMASI (INTEGRAL) FOURIER Salim, Ravi Ahmad; Ernastuti, Ernastuti
Majalah Ilmiah Matematika Komputer 2007: MAJALAH MATEMATIKA KOMPUTER EDISI AGUSTUS
Publisher : Majalah Ilmiah Matematika Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1203.458 KB)

Abstract

Tujuan dari tulisan ini adalah untuk menjelajahi transformasi yang terbentuk dari Deret fourier alih-alihdari integral Fourier. Sifat yang diselidiki di sini ditelusuri menurut jalan cerita dari transformasiFourier, misalnya transformasi turunan dan integral, konvolusi, serta turunan dan integral dari hasiltransformasi. Juga dibicarakan deret Fourier kompleks yang melahirkan transformasi yangmerupakan versi spektrum diskret dari transformasi Fourier kompleks. Setelah itu perolehannya akandibandingkan sehingga analogi masing-masing akan semakin jelas.Kata Kunci: Transformasi Deret fourier, Transformasi Integral Fourier. Fourier Kompleks.
ALGORITMA LEARNING VECTOR QUANTIZATION DAN FUZZY K-NN UNTUK PREDIKSI SAHAM BERDASARKAN PESAING Fitriani, Risma Rahmalia; Ernastuti, Ernastuti; Swedia, Ericks Rachmat
Jurnal Ilmiah Teknologi dan Rekayasa Vol 24, No 1 (2019)
Publisher : Universitas Gunadarma

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (266.478 KB) | DOI: 10.35760/tr.2019.v24i1.1929

Abstract

Prediksi saham adalah hal yang sangat berpengaruh bagi seorang investor. Investor akan mampu menemukan saham yang tepat dan waktu yang tepat untuk membeli atau menjual dengan melakukan prediksi saham. Prediksi yang akurat dapat membantu investor untuk mendapatkan keuntungan yang besar. Keuntungan yang besar sebanding dengan resiko besar yang terkait dengan hal tersebut dan ada kesempatan yang sama dalam kehilangan uang. Keuntungan yang besar serta resiko kehilangan yang besar, menyebabkan para investor dituntut untuk bisa melakukan berbagai analisa untuk mengukur nilai saham. Pada penelitian ini dilakukan prediksi fluktuasi harga saham berdasarkan fluktuasi harga saham perusahaan pesaing dengan menggunakan algoritma Learning Vector Quantization (LVQ) dan Fuzzy K-Nearest Neighbours. Data saham yang diprediksi adalah saham perusahaan Apple, berdasarkan fluktuasi harga saham perusahaan IBM, Cisco, Fujitsu, Hewlett-Package, dan Ericsson dengan waktu dari tanggal 4 Januari 2000 sampai dengan tanggal 31 Agustus 2015.  Pengujian dilakukan dari tanggal 1 September sampai 30 September 2015. Data yang diperoleh dari situs resmi http://finance.yahoo.com yang memuat data harga saham dari waktu ke waktu . Hasil prediksi fluktuasi harga saham perusahaan Apple terhadap empat saham perusahaan pesaing lainnya memiliki persentase prediksi benar dengan nilai terendah yaitu 47.62% untuk algoritma Learning Vector Quantization (LVQ) dan nilai tertinggi yaitu 61.90% untuk algoritma Fuzzy KNN.
Manajemen Risiko Teknologi Informasi Pada Penerapan E-Recruitment Berbasis ISO 31000:2018 Dengan FMEA (Studi Kasus PT Pertamina) Pribadi, Hanafi Indra; Ernastuti, Ernastuti
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 10, No 1 (2020): Volume 10 Nomor 1 Tahun 2020
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1056.322 KB) | DOI: 10.21456/vol10iss1pp28-35

Abstract

Increasing the efficiency of time and human resources in the process of recruiting PT. Pertamina (Persero) to carry out its business processes that are spread throughout Indonesia is very much needed by implementing a website-based online recruitment system. Increased efficiency is obtained from a system that runs without constraints, while the weaknesses (vulnerabilities) in a system will cause great threats to the company, then the risk management of information technology on the application of the E-Recruitment system needs to be done by referring to ISO 31000: 2018 and risk assessment to get a Risk Priority Number (RPN), which is the priority of risk treatment for each risk attribute using the FMEA (Failure Modes and Effects Analysis) method based on ISO 31010: 2009 with the aim of knowing and assessing how much the threats and risks in an information system can become consideration of company stakeholders in implementing the system. Risks obtained in this study are 3 types of potential risks and 28 risk attributes, after a risk assessment has been obtained, the results are obtained that 7 risk attributes require special attention in the process of implementing the system so that it can run well in the future.
Analysis of Deauthentication Attack on IEEE 802.11 Connectivity Based on IoT Technology Using External Penetration Test Kristiyanto, Yogi; Ernastuti, Ernastuti
CommIT (Communication and Information Technology) Journal Vol 14, No 1 (2020): CommIT Vol. 14 No. 1 Tahun 2020
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/commit.v14i1.6337

Abstract

The research aims to know the level of security of WiFi connectivity against deauthentication attacks on Internet of Things (IoT)-based devices. It is done through testing using an external penetration test method. The external penetration test simulates a real external attack without information about the target system and network given. The process starts from accessing the device through Internet or WiFi by the test target. At the same time, the attacker performs Denial-of-Service (DoS) attacks onWiFi. The attacker uses Arduino ESP8266 NodeMCU WiFi with Lua programming. To record WiFi activities, the researchers use CommView for WiFi V. 7.0, and the target is Internet Protocol (IP) camera device. The result shows that the communication of the test target with the gateway is lost, but the Media Access Control (MAC) of the test target is still registered at the gateway. Deauthentication attacks cause communication paralysis, and several changes occur, such as an increase in data rate, and change in frequency channel, Distribution System (DS) status, retry bits in frame management, and the sequence number.
Accelerating Compression Time of the standard JPEG by Employing The Quantized YCbCr Color Space Algorithm Trini Saptariani; Sarifudin Madenda; Ernastuti Ernastuti; Widya Silfianti
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (772.335 KB) | DOI: 10.11591/ijece.v8i6.pp4343-4351

Abstract

In this paper, we propose a quantized YCbCr color space (QYCbCr) technique which is employed in standard JPEG. The objective of this work is to accelerate computational time of the standard JPEG image compression algorithm. This is a development of the standard JPEG which is named QYCBCr algorithm. It merges two processes i.e., YCbCr color space conversion and Q quantization in which in the standar JPEG they were performed separately. The merger forms a new single integrated process of color conversion which is employed prior to DCT process by subsequently eliminating the quantization process. The equation formula of QYCbCr color coversion is built based on the chrominance and luminance properties of the human visual system which derived from quatization matrices. Experiment results performed on images of different sizes show that the computational running time of QYCbCr algorithm gives 4 up to 8 times faster than JPEG standard, and also provides higher compression ratio and better image quality.
Comparison of Three Segmentation Methods for Breast Ultrasound Images based on Level Set and Morphological Operations Dewi Putrie Lestari; Sarifuddin Madenda; Ernastuti Ernastuti; Eri Prasetyo Wibowo
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 1: February 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (725.617 KB) | DOI: 10.11591/ijece.v7i1.pp383-391

Abstract

Breast cancer is one of the major causes of death among women all over the world. The most frequently used diagnosis tool to detect breast cancer is ultrasound. However, to segment the breast ultrasound images is a difficult thing. Some studies show that the active contour models have been proved to be the most successful methods for medical image segmentation. The level set method is a class of curve evolution methods based on the geometric active contour model. Morphological operation describes a range of image processing technique that deal with the shape of features in an image. Morphological operations are applied to remove imperfections that introduced during segmentation. In this paper, we have evaluated three level set methods that combined with morphological operations to segment the breast lesions. The level set methods that used in our research are the Chan Vese (C-V) model, the Selective Binary and Gaussian Filtering Regularized Level Set (SBGFRLS) model and the Distance Regularized Level Set Evolution (DRLSE) model. Furthermore, to evaluate the method, we compared the segmented breast lesion that obtained by each method with the lesion that obtained manually by radiologists. The evaluation is done by four metrics: Dice Similarity Coefficient (DSC), True-Positive Ratio (TPR), True-Negative Ratio (TNR), and Accuracy (ACC). Our experimental results with 30 breast ultrasound images showed that the C-V model that combined with morphological operations have better performance than the other two methods according to mean value of DSC metrics.
Cursive Handwriting Segmentation using Ideal Distance Approach Fitrianingsih Fitrianingsih; Sarifuddin Madenda; Ernastuti Ernastuti; Suryarini Widodo; Rodiah Rodiah
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 5: October 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (686.775 KB) | DOI: 10.11591/ijece.v7i5.pp2863-2872

Abstract

Offline cursive handwriting becomes a major challenge due to the huge amount of handwriting varieties such as slant handwriting, space between words, the size and direction of the letter, the style of writing the letter and handwriting with contour similarity on some letters. There are some steps for recursive handwriting recognition. The steps are preprocessing, morphology, segmentation, features of letter extraction and recognition. Segmentation is a crucial process in handwriting recognition since the success of segmentation step will determine the success level of recognition. This paper proposes a segmentation algorithm that segment recursive handwriting into letters. These letters will form words using a method that determine the intersection cutting point of image recursive handwriting with an ideal image distance. The ideal distance of recursive handwriting image is an ideal distance segmentation point in order to avoid the cutting of other letter’s section. The width and height of images are used to determine the accurate segmentation point. There were 999 recursive handwriting input images taken from 25 researchers used for this study. The images used are the images obtained from preprocessing step. Those are the images with slope correction. This study used Support Vector Machine (SVM) to recognize recursive handwriting. The experiments show the proposed segmentation algorithm able to segment the image precisely and have 97% success recognizing the recursive handwriting.
Wood Classification Based on Edge Detections and Texture Features Selection Achmad Fahrurozi; Sarifuddin Madenda; Ernastuti Ernastuti; Djati Kerami
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 5: October 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (380.015 KB) | DOI: 10.11591/ijece.v6i5.pp2167-2175

Abstract

One of the properties of wood is a mechanical property, includes: hardness, strength, cleavage resistance, etc. Among these properties there that can be measured or estimated by visual observation on cross-sectional areas of wood, which is based on inter-fiber density, fiber size, and lines that build the annual rings. In this paper, we proposed a new wood quality classification method based on edge detections. Edge detection is applied to the wood test images with the aim to improving the characteristics of wood fibers so as to make it easier to distinguish their quality. Gray Level Co-occurrence Matrix (GLCM) used to obtain wood texture features, while the wood quality classification done by Naïve Bayes classifier. Found in our experimental results that the first-order edge detection is likely to provide a good accuracy rate and precision. The second order edge detection is highly dependent on the choice of parameters and tends to give worse classification results, as filtering the original wood image, thus blurring characteristics related to wood density. Selection of features obtained from co-occurrence matrix is also quite affected the classification results.