JURNAL MEDIA INFORMATIKA BUDIDARMA
Vol 5, No 3 (2021): Juli 2021

Metode Seleksi Fitur Untuk Klasifikasi Sentimen Menggunakan Algoritma Naive Bayes: Sebuah Literature Review

Fitria Septianingrum (Universitas Singaperbangsa Karawang, Karawang)
Agung Susilo Yuda Irawan (Universitas Singaperbangsa Karawang, Karawang)



Article Info

Publish Date
31 Jul 2021

Abstract

In the era of the industrial revolution 4.0 as it is today, where the internet is a necessity for people to live their daily lives. The high intensity of internet use in the community, it causes the distribution of information in it to spread widely and quickly. The rapid distribution of information on the internet is also in line with the growing growth of digital data, so that the public opinions contained therein become important things. Because, from this digital data, it can be processed with sentiment analysis in order to obtain useful information about issues that are developing in the community or to find out public opinion on a company's product. The number of studies related to sentiment analysis that applies the Naive Bayes algorithm to solve the problem, so researchers are interested in conducting research on the use of feature selection for the algorithm. Therefore, this research was conducted to determine what feature selection is the most optimal when combined with the Naive Bayes algorithm using the Systematic Literature Review (SLR) research method. The results of this study concluded that the most optimal feature selection method when combined with the Naive Bayes algorithm is the Particle Swarm Optimization (PSO) method with an average accuracy value of 89.08%.

Copyrights © 2021






Journal Info

Abbrev

mib

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering

Description

Decission Support System, Expert System, Informatics tecnique, Information System, Cryptography, Networking, Security, Computer Science, Image Processing, Artificial Inteligence, Steganography etc (related to informatics and computer ...