Dinamika Kesehatan: Jurnal Kebidanan dan Keperawatan
Vol 9, No 2 (2018): Dinamika Kesehatan Jurnal Kebidanan dan Keperawatan

Backward Elimination Untuk Meningkatkan Akurasi Kejadian Stunting Dengan Analisis Algortima Support Vector Machine

Agus Byna (Akademi Kebidanan Sari Mulia Banjarmasin)
Fadhiyah Noor Anisa (Akademi Kebidanan Sari Mulia Banjarmasin)



Article Info

Publish Date
15 Dec 2018

Abstract

Latar Belakang: Prevalensi stunting pada balita di Indonesia masih tinggi terutama pada usia 2-3 tahun. Faktor risko stunting antara lain panjang badan lahir, asupan, penyakit dan infeksi, genetik, dan status sosial ekonomi keluarga. Stunting terutama pada anak usia diatas 2 tahun sulit diatasi, sehingga penelitian mengenai faktor risiko stunting pada anak usia diatas 2 tahun diperlukan. Penggunaan Data di bidang kesehatan di perlukan sebagai tolak ukur untuk mencari hubungan, analisis, dan faktor-faktorTujuan: Selain memberikan keilmuan di bidang Informatikan juga berguna bagi ilmu kesehatan dalam pengelolaan data dalam mengambil keputusan. Serta Dapat mengurangi dampak tentang kejadian stuntingMetode: Backward Elimination dengan algortima Support Vector MachineHasil: nilai akurasi sebesar 81.62% dan nilai AUC sebesar 0.921 dengan tingkat diagnose Excellent Classification, namun setelah dilakukan penambahan yaitu Backward Elimination dengan Algortima Support Vector Machine nilai akurasi sebesar 90.16% dan nilai AUC sebesar 0,962 dengan tingkat diagnosa Excelent Classification. Dari 13 atrribut menjadi 10 atrribut, Sehingga kedua metode tersebut memiliki perbedaan tingkar akurasi yaitu sebesar 8,54% dan perbedaan nilai AUC sebesar 0,041.Simpulan: Penerapan metode Backward Elimination dapat meningkatkan nilai akurasi pada algoritma SVM dan juga menseleksi atrribut/variable.Kata Kunci: Backward Elimination, Data Mining, Kejadian Stunting, SVM.AbstractBackground: The prevalence of stunting in infants in Indonesia is still high, especially at 2-3 years of age. Risk factors for stunting include birth length, intake, disease and infection, genetic, and family socioeconomic status. Stunting, especially in children aged over 2 years is difficult to overcome, so research on risk factors for stunting in children aged over 2 years is neededPurpose: In addition to providing knowledge in the field of Informatics, it is also useful for health science in managing data in making decisions. Can reduce the impact of stunting events. Backward Elimination.Method: with Support Vector Machine algorithmResult: of accuracy value is 81.62% and AUC value is 0.921 with the level of diagnosis Excellent Classification, but after adding the Backward Elimination with Support Vector Machine Algebraic accuracy value is 90.16% and AUC value is 0.962 with level Excelent Classification diagnosis. From the 13 attributes to 10 attributes, so the two methods have differences in accuracy of 8.54% and the difference in AUC value is 0.041.Conclusion: The application of the Backward Elimination method can increase the accuracy value of the SVM algorithm and also select the attribute /variable. Keywords: Backward Elimination, Data Mining, Stunting Events, SVM. 

Copyrights © 2018






Journal Info

Abbrev

dksm

Publisher

Subject

Education Health Professions Medicine & Pharmacology Nursing Public Health

Description

The Dinamika Kesehatan Jurnal Kebidanan dan keperawatan is a peer-reviewed, open-access journal, disseminating the highest quality research in the field relevant to midwifery and nursing in the form of meta-analyses, research results, literature studies, clinical practice, and case reports/case, ...