IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 11, No 4: December 2022

Machine learning model for green building design prediction

Mustika Sari (Universitas Indonesia)
Mohammed Ali Berawi (Universitas Indonesia)
Teuku Yuri Zagloel (Universitas Indonesia)
Rizka Wulan Triadji (Universitas Indonesia)



Article Info

Publish Date
01 Dec 2022

Abstract

Green Building (GB) is a design concept that implements sustainable processes and green technologies in the building’s life cycle. However, the design process of GB tends to take longer than conventional buildings due to the integration of various green requirements and performances into the building design. Technological advances are continually improving the quality of human life by providing solutions to problems they encounter, such as the machine learning (ML) technique utilized to develop predictive and classification models. This study aims to develop a GB design prediction by employing an ML approach by considering four GB design criteria: energy efficiency, indoor environmental quality, water efficiency, and site planning. A dataset of GB projects collected from a private construction company based in Jakarta was used to train and test the ML model. Mean Square Error (MSE) was used to evaluate the model accuracy. The comparison of MSE results of the conducted experiments showed that the combination of the ANN method with the IF-ELSE algorithm resulted in the most accurate ML model for GB design prediction with an MSE of 1.3, creating a predictive model that improves the time efficiency of GB design process.

Copyrights © 2022






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...