Saat ini metode deep learning dapat diaplikasikan untuk memprediksi suatu kejadian, seperti memprediksi cuaca suatu wilayah. Salah satu contoh deep learning yang cocok digunakan pada jenis data time series adalah LSTM. Penelitian ini menerapkan metode deep learning LSTM dengan jumlah layer 200, perbandingan data training dengan data test sebesar 9:1, serta mengukur nilai RMSE dan RMSE update hasil validasi dan prediksi beberapa hari ke depan. Data yang digunakan terdiri dari pengukuran suhu udara, kelembaban udara, kecepatan angin, dan tekanan udara selama bulan Januari dan Februari 2019. Data bulan Januari digunakan sebagai data training dan test untuk melakukan validasi prakiraan, sedangkan data bulan Februari digunakan sebagai pembanding dari hasil prediksi deep learning LSTM. Hasil penelitian menunjukkan RMSE seluruh validasi parameter cuaca nilainya semakin baik ketika menggunakan LSTM dengan update. Diperoleh RMSE update untuk parameter suhu, kelembaban, kecepatan angin, dan tekanan udara masing-masing bernilai 0,576; 2,8687; 2,1963; dan 1,0647. Sedangkan prediksi suhu udara, kelembaban, kecepatan angin, dan tekanan udara untuk 1 hari ke depan (1 Februari 2019) masing-masing sebesar 1,0337; 6,3413; 2,8934; dan 1,4313. Dari parameter tersebut hanya parameter suhu dan kelembaban udara yang mengalami pertambahan RMSE seiring bertambahnya waktu. Sedangkan parameter kecepatan angin dan tekanan udara mengalami penurunan di hari ketiga dan meningkat secara kontinu hingga satu bulan ke depan. Today, deep learning can be applied to predict any events, such as predict the weather of a region. One of them is LSTM which is suitable for use in time series data types. This study conducted the deep learning LSTM with the number of 200 layers, ratio training with test data of 9:1, measuring the value of validation RMSE and RMSE update and also predictions some weather parameters in a few days later. The data used consisted of measurements of air temperature, humidity, wind speed, and air pressure during January and February 2019. The data January were used as training and test data to conduct forecast validation, while the data February was used as a comparison of the results predicted for deep learning LSTM. The result shows that the forecast RMSE for all-weather parameters is better when using LSTM with an update. Obtained for temperature, relative humidity, wind speed, and air pressure have RMSE with update are 0,576; 2,8687; 2,1963; and 1,0647, respectively. While the prediction of air temperature, wind speed, and air pressure for one day later (1 February 2019) is 1.0337; 6.3413; 2,8934; and 1.4313, respectively. From the all-weather parameters only temperature and humidity parameter that increase in RMSE over time. While the parameters such as wind speed and air pressure decreased on the third day and increased continuously for the next one month.
Copyrights © 2021