JURIKOM (Jurnal Riset Komputer)
Vol 9, No 3 (2022): Juni 2022

Implementasi Convolutional Neural Network Untuk Klasifikasi Daging Menggunakan Fitur Ekstraksi Tekstur dan Arsitektur AlexNet

Amalia Hanifah Artya (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru)
Jasril Jasril (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru)
Suwanto Sanjaya (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru)
Fadhilah Syafria (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru)
Elvia Budianita (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru)



Article Info

Publish Date
30 Jun 2022

Abstract

The demand for meat began to increase rapidly, causing drastic price changes and causing the existence of scammers to inflate the price of meat to get big profits by mixing beef and pork. Few consumers are aware of the mixing of meat, to distinguish between beef and pork can be seen in terms of color and texture, but this theory still has weaknesses. This research uses the Deep Learning method, namely Convolutional Neural Network with Local Binary Pattern texture extraction feature and AlexNet architecture for meat classification. The research conducted stated that the accuracy of the meat image classification can be measured using various parameters and optimizers. The highest accuracy results obtained from this study were 68.6% accuracy, 62% precision, 57.6% recall, and 59% f1-score using the Stochastic Gradient Descent (SGD) optimizer, 0.01 learning rate, 32 batch size, and 0.9 momentum. Compared to the original dataset, the accuracy of the LBP dataset type is still below the original dataset with the results obtained from the accuracy of the original dataset are 84.1% accuracy, 78.6% precision, 79% recall, and 79% f1-score using the RMSprop optimizer, 0 .0001 learning rate, 32 batch sizes, and momentum So it can be concluded that the AlexNet architecture by setting the existing parameter values can increase the accuracy value.

Copyrights © 2022






Journal Info

Abbrev

jurikom

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering

Description

JURIKOM (Jurnal Riset Komputer) membahas ilmu dibidang Informatika, Sistem Informasi, Manajemen Informatika, DSS, AI, ES, Jaringan, sebagai wadah dalam menuangkan hasil penelitian baik secara konseptual maupun teknis yang berkaitan dengan Teknologi Informatika dan Komputer. Topik utama yang ...