Claim Missing Document
Check
Articles

Found 24 Documents
Search

Aplikasi Android untuk Alih Aksara Latin ke Arab Melayu dengan Pendekatan Berbasis Aturan Yusra, Yusra; Fikry, Muhammad; Yani, Susmi Syahfrida; Irsyad, Muhammad; Sanjaya, Suwanto
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 6, No 2 (2020): Desember 2020
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (478.821 KB) | DOI: 10.24014/coreit.v6i2.11645

Abstract

Bahasa Indonesia didasarkan dari bahasa Melayu yang dapat dituliskan dengan menggunakan aksara Latin dan aksara Arab Melayu. Saat ini, generasi muda di Riau lebih memahami penggunaan aksara Latin daripada aksara Arab Melayu. Meskipun mereka mendapatkan pelajaran baca tulis Arab Melayu di sekolah, ketidaktahuan dan kurang pahamnya aturan dalam menulis Arab Melayu akan menyebabkan kesalahan penulisan. Untuk mencegah terjadinya kesalahan penulisan, dipergunakan aplikasi transliterasi (alih aksara). Transliterasi melakukan penyalinan dengan penggantian huruf dari abjad yang satu ke abjad yang lain. Aplikasi alih aksara dirancang berdasarkan aturan-aturan yang ada di buku Pedoman Umum Tulisan Arab Melayu, dan dibangun menggunakan bahasa pemrograman Java (Android). Pengujian dilakukan dengan membandingkan keluaran dari aplikasi terhadap hasil alih aksara oleh pakar aksara Arab Melayu. Akurasi dari hasil pengujian sebesar 95,5%. Persentase akurasi menunjukkan bahwa hasil validitasnya pada kriteria Sangat Valid.
Penerapan Metode Winnowing Fingerprint dan Naive Bayes untuk Pengelompokan Dokumen Radili, Adi; Sanjaya, Suwanto
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 3, No 2 (2017): Desember 2017
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1038.815 KB) | DOI: 10.24014/coreit.v3i2.4418

Abstract

Keanekaragaman dokumen teks serta jumlahnya saat ini terus bertambah yang menyebabkan penumpukan dokumen. Dokumen yang tersebar dan tidak terkoordinasi dengan baik akan menyulitkan pencari informasi dalam mendapatkan informasi yang diinginkan, maka perlu dibuatnya suatu sistem yang dapat mengelompokkan dokumen. Penelitian ini menerapkan metode winnowing untuk pemilihan fitur yaitu fingerprint dan naive bayes untuk pengelompokan. Pengelompokan dokumen dengan menggunakan winnowing fingerprint dan naive bayes mempunyai 8 bidang keahlian dengan menggunakan 1050 dokumen abstrak dengan 90% data latih dan 10% data uji. Pengujian menghasilkan akurasi 40% (k-gram=3, bilangan prima=2 dan jumlah window=8), 49,52% (k-gram=5, bilangan prima=2 dan jumlah window=8), 84,76% (k-gram=8, bilangan prima=2 dan jumlah window=8) dan 67,61% (k-gram=12, bilangan prima=2 dan jumlah window=8). Sedangkan pengujian menggunakan data yang seimbang, yaitu 400 data latih (masing-masing kelas memiliki 50 dokumen) menghasilkan akurasi 20% (k-gram=3, bilangan prima=2 dan jumlah window=8), 27,5% (k-gram=5, bilangan prima=2 dan jumlah window=8), 70% (k-gram=8, bilangan prima=2 dan jumlah window=8) dan 47,5% (k-gram=12, bilangan prima=2 dan jumlah window=8). Konfigurasi winnowing dengan nilai k-gram=8, bilangan prima=2 dan jumlah window=8 akan menghasilkan ciri dokumen yang terbaik untuk pengelompokan dokumen.Kata kunci – Text Mining, Winnowing, Naive Bayes, Fingerprint, Pengelompokan Dokumen
Penerapan Learning Vector Quantization Pada Pengelompokan Tingkat Kematangan Buah Tomat Berdasarkan Warna Buah Sanjaya, Suwanto
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 5, No 2 (2019): Desember 2019
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1466.167 KB) | DOI: 10.24014/coreit.v5i2.8199

Abstract

Tingkat kematangan buah tomat dapat dilihat dari warna buah. Pada penelitian sebelumnya pernah dilakukan penentuan tingkat kematangan buah tomat menggunakan fitur Hue, Saturation, dan Value (HSV), serta metode klasifikasi Learning Vector Quantization (LVQ). Pada penelitian tersebut menggunakan data citra buah tomat dari satu sisi. Pada kenyataanya, tidak semua buah tomat memiliki penyebaran warna yang sama disetiap sisinya. Oleh karena itu dibutuhkan teknik untuk merata-ratakan informasi warna dari beberapa sisi buah. Berdasarkan permasalahan tersebut, maka data citra buah tomat yang digunakan diambil dari empat sisi untuk setiap buahnya. Total data citra yang digunakan adalah 400 citra dari empat sisi dan setelah dirata-ratakan menjadi 100 data. Level kematangan buah tomat yang digunakan adalah 5 level yaitu green, breakers, turning, pink, light red, dan red. Proses pelatihan dan pengujian bobot optimal menggunakan K-Fold Cross Validation. Berdasarkan hasil pengujian, rata-rata akurasi tertinggi adalah mencapai 87,25% yang diuji menggunakan 400 citra setiap sisi buah. Berdasarkan hasil pengujian tersebut dapat disimpulkan nilai HSV yang dihasilkan dari rata-rata penggabungan citra empat sisi dapat dijadikan alternatif untuk menentukan tingkat kematangan buah tomat karena dapat meningkatkan akurasi walaupun tidak terlalu signifikan
Pengelompokan Dokumen Menggunakan Winnowing Fingerprint dengan Metode K-Nearest Neighbour Sanjaya, Suwanto; Absar, Ersad Alfarsy
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 1, No 2 (2015): Desember 2015
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1029.793 KB) | DOI: 10.24014/coreit.v1i2.1229

Abstract

Text mining dapat didefinisikan sebagai suatu proses menggali informasi oleh seorang user yang berinteraksi dengan sekumpulan dokumen menggunakan tools analisis yang merupakan komponen- komponen dalam data mining. Dalam text mining dikenal beberapa metode untuk klasifikasi teks, salah satunya adalah K-Nearest Neightbour (KNN). KNN adalah sebuah metode untuk melakukan klasifikasi terhadap objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan objek tersebut. Pada penelitian ini akan dilakukan klasifikasi terhadap dokumen teks menggunakan metode KNN berdasarkan winnowing fingerprint. Winnowing adalah algoritma yang biasa digunakan untuk mendeteksi kesamaan isi suatu dokumen teks dengan cara memecah kalimat yang ada pada dokumen teks menjadi beberapa karakter sepanjang k-grams dan menghasilkan output berupa kumpulan nilai hash yang disebut fingerprint. Penelitian ini mencoba untuk menjadikan fingerprint sebagai ciri suatu dokumen teks lalu mengelompokkan dokumen teks berdasarkan ciri tersebut. Proses klasifikasi diawali dengan mengumpulkan dokumen latih yang akan dijadikan sebagai acuan dalam pengelompokan dokumen. Dokumen latih tersebut diproses dengan metode winnowing untuk mendapatkan ciri dari dokumen tersebut. Dokumen uji yang ingin dikelompokkan juga harus melewati proses winnowing, setelah fingerprint didapat maka dilanjutkan dengan proses klasifikasi menggunakan metode KNN. Dari hasil pengujian terhadap 10 dokumen uji didapat nilai akurasi pengelompokan 80%.
Data Warehouse Design For Sales Transactions on CV. Sumber Tirta Anugerah Syaputra, Muhammad Dwiky; Nazir, Alwis; Gusti, Siska Kurnia; Sanjaya, Suwanto; Syafria, Fadhilah
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 8, No 2 (2022): December 2022
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (644.133 KB) | DOI: 10.24014/coreit.v8i2.19800

Abstract

Many data warehouses are implemented in companies engaged in retail, CV. Sumber Tirta Anugerah is one of the paint product retail companies that has not implemented it yet. As time goes by, the sales transaction data is getting more and more difficult to process because it is still stored in Microsoft Excel. This is a serious problem in utilizing historical data to assist in making a decision. It is difficult to store sales data because the data is quite large and a lot. Based on the above problems, a data warehouse design is needed for sales transaction data. This data warehouse design uses Kimball's nine-steps method and star schema. To perform the ETL process (extract, transform, and load) using Pentaho software. In this data warehouse design, Tableau software is used to visualize the processed data into a graph and dashboard report. The result of this research is a data warehouse design using nine steps and a star schema which gets a transformation response time of 4048 MS. 
Klasifikasi American Sign Language Menggunakan Convolutional Neural Network Israldi, Tino; Haerani, Elin; Sanjaya, Suwanto; Syafria, Fadhilah
Building of Informatics, Technology and Science (BITS) Vol 4 No 3 (2022): December 2022
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i3.2570

Abstract

Communicating is a necessity for all groups or individual because each individual should communicate with their surroundings. Communicating can also make us get information so that it can be used as a reference to be able to adapt. Verbal language used by speaking out loud is a way of communicating with individuals, but not all individuals can communicate with it, especially there are some individuals who have hearing limitations. Because of these limitations, another program that can be used is through sign language. Language requirements are languages that are usually used by people with disabilities in terms of hearing or speaking and sign language also has a fairly well-known sign language standard, namely the American Sign Language (ASL) standard. Unlike languages in the world, sign language is also often of little interest to most people because people's interest in sign language is still lacking so that most people are unable to understand their language. Sign language has many types, one of which is sign language by using hands to form letters and numbers. In overcoming these problems, the solution is to create a system that can be used to recognize sign language, the system developed is a system that used machine learning technology. This study will propose an ASL classification approach through data preprocessing and a convolutional neural network model. The proposed model can classify ASL hand posture images to be translated into the alphabet. The result of this study is an model with accuracy of 99.8% obtained from the process of merging preprocessing data and the convolutional neural network model.
Penerapan Deep Learning Menggunakan Gated Recurrent Unit Untuk Memprediksi Harga Minyak Mentah Dunia Saputra, Nugroho Wahyu; Insani, Fitri; Agustian, Surya; Sanjaya, Suwanto
Building of Informatics, Technology and Science (BITS) Vol 5 No 1 (2023): June 2023
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v5i1.3552

Abstract

Crude oil is a much-needed energy for the whole world. Each country is inseparable from the use of crude oil for use in various sectors, such as transportation, so that the price of world crude oil is the most important variable for the world. Fluctuations in oil prices will cause various problems, such as inflation, changes in market prices, and others. Therefore, the prediction of world crude oil prices is very important as a consideration for decision making. This study implements deep learning using the Gated Recurrent unit model. The data used is the price of Brent crude oil with a total of 5834 data, starting from January 4, 2000 to December 19, 2022. The parameters used are the number of GRU units, batch size, and lookback. The best model produced in this study is the GRU model with hyperparameters consisting of 30 lookbacks, 50 GRU units, and 256 batch sizes with the lowest MAPE value among the other models, which is 2.25%. The MAPE value states that predictions using the GRU model are said to be very good at predicting world crude oil prices
Performance Analysis of LVQ 1 Using Feature Selection Gain Ratio for Sex Classification in Forensic Anthropology Harni, Yulia; Afrianty, Iis; Sanjaya, Suwanto; Abdillah, Rahmad; Yanto, Febi; Syafria, Fadhilah
Building of Informatics, Technology and Science (BITS) Vol 5 No 1 (2023): June 2023
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v5i1.3625

Abstract

One approach to handling large of data dimensions is feature selection. Effective feature selection techniques produce the essential features and can improve classification algorithms. The accuracy performance results can measure the accuracy of the method used in the classification process. This research uses the Learning Vector Quantization (LVQ) 1 method combined with Gain Ratio feature selection. The data used is male and female skull bone measurement data totaling 2524. The highest accuracy results are obtained by LVQ 1, which uses a Gain Ratio with a threshold of 0.01 with a learning rate = 0.1, which is 92.01%, and the default threshold weka(-1.7976931348623157E308) with a learning rate = 0.1, which is 92.19%. In comparison, previous research that did not use gain ratio or that did not use GR only had the best results of 91.39% with a learning rate = 0.1, 0.4, 0.7, 0.9. This shows that LVQ 1 using the Gain Ratio can be recommended to improve the performance of the Skull dataset compared to LVQ 1 without Gain Ratio.
RANCANG BANGUN APLIKASI SIMULASI MINING PADA JARINGAN BLOCKCHAIN BITCOIN Sugandi, Hatami Karsa; Harahap, Nazruddin Safaat; Cynthia, Eka Pandu; Yanto, Febi; Sanjaya, Suwanto
Sebatik Vol. 26 No. 1 (2022): Juni 2022
Publisher : STMIK Widya Cipta Dharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46984/sebatik.v26i1.1875

Abstract

Bitcoin merupakan salah satu dari mata uang digital yang dalam regulasinya tidak diatur oleh siapa pun seperti lembaga, organisasi maupun pemerintahan. Bitcoin menggunakan teknologi kriptografi atau yang biasa dikenal dengan teknologi Blockchain. Teknologi ini merupakan teknologi penyimpanan data atau transaksi kedalam sebuah block, dimana setiap proses penambahan block baru harus melalui proses validasi oleh sistem sesuai dengan konsensus yang berlaku. Untuk mengamankan jaringan Blockchain miliknya, bitcoin menggunakan algoritma konsensus Proof of Work (PoW). Proses validasi block inilah yang dinamakan dengan proses mining. Mining dilakukan untuk menambahkan transaksi kedalam Block dengan cara memecahkan teka-teki matematika dari algoritma PoW dengan cara memberikan komputasi power dari GPU oleh miner. Dikarenakan membutuhkan power yang besar, para miner diberi imbalan berupa bitcoin. Besaran bitcoin yang diterima tergantung dari hash power miner. Fenomena mining bitcoin menjadi trend bisnis pada masa kini karena menjanjikan keuntungan. Fenomena ini membuat banyak orang awam untuk ikut melakukan mining, tanpa mengetahui apa yang sebenarnya akan dilakukan. Maka dari itu simulasi ini dibuat dengan tujuan untuk mengedukasi bagaimana proses yang terjadi pada mining Bitcoin dengan cara visualisasi melalui Aplikasi web yang nantinya akan dibangun menggunakan bahasa pemrograman javascript dan diharapkan dapat menggambarkan proses mining pada blockchain dengan menerapkan algoritma konsensus Proof of Work di dalamnya.
The Turbofan Engine Remaining Useful Life Prediction Using 1-Dimentional Convolutional Neural Network Fauzan, Ahmad; Handayani, Lestari; Insani, Fitri; Jasril, Jasril; Sanjaya, Suwanto
Computer Engineering and Applications Journal Vol 13 No 03 (2024)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v13i03.484

Abstract

Turbofan engines have been the dominant type of engine in aircraft for the last forty years. Ensuring the quality of these engines is crucial for flight safety, particularly for long-distance flights. However, their performance degrades over time, impacting flight safety. To address this issue, it is essential to predict potential engine failures by estimating the Remaining Useful Life (RUL) of the engines Deep learning, especially Convolutional Neural Networks (CNNs), has demonstrated exceptional proficiency in handling intricate, non-linear data, leading to improved RUL predictionsdue to their ability to process complex and non-linear data. In this project, a 1-D CNN is used to predict RUL using the NASA C-MAPSS FD001 dataset, which consists of 3 settings and 21 sensors, though sensors with stagnant readings are excluded. The dataset is normalized using min-max and z-score methods, and then segmented into sequences for input into the 1-D CNN model. Various training scenarios were evaluated, with the best RMSE of 3.26 achieved using 10 epochs, a learning rate of 0.0001, and z-score normalization. The results indicate that feature selection can produce a lower RMSE compared to scenarios without feature selection.