Jurnal Siger Matematika
Vol 2, No 1 (2021): Jurnal Siger Matematika

Perbandingan Metode Bootstrap, Jacknife Jiang Dan Area Specific Jacknife Pada Pendugaan Mean Square Error Model Beta-Bernoulli

Yesi Santika (Universitas Lampung)
Widiarti Widiarti (Universitas Lampung)
Fitriani Fitriani (Universitas Lampung)
Mustofa Usman (Unknown)



Article Info

Publish Date
31 Mar 2021

Abstract

Small area estimation is defined as a statistical technique for estimating the parameters of a subpopulation with a small sample size. One method of estimating small area parameters is the Empirical Bayes (EB) method.  The accuracy of the Empirical Bayes (EB) estimator can be measured by evaluating the Mean Squared Error (MSE). In this study, 3 methods to determine MSE in the EB estimator of the Beta-Bernoulli model will be compared, namely the Bootstrap, Jackknife Jiang and Area-specific Jackknife methods.  The study is carried out theoretically and empirically through simulation with R-studio software version 1.2.5033. The simulation results in a number of areas and pairs of prior distribution parameter values, namely Beta, show the effect of sample size and parameter value pairs on the Mean Square Error (MSE) value. The larger the number of areas and the smaller the initial ????, the smaller the MSE value.  The area-specific Jackknife method produces the smallest MSE in the number of areas 100 and the Beta parameter value 0.1.

Copyrights © 2021






Journal Info

Abbrev

JSM

Publisher

Subject

Mathematics

Description

Jurnal Siger Matematika is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. publised by Departement Mathematics, Faculty of Mathematics and Natural Sciences, University of Lampung. This journal covers all ...