BAREKENG: Jurnal Ilmu Matematika dan Terapan
Vol 16 No 3 (2022): BAREKENG: Journal of Mathematics and Its Applications

ON THE IRREGULARITY STRENGTH AND MODULAR IRREGULARITY STRENGTH OF FRIENDSHIP GRAPHS AND ITS DISJOINT UNION

Apituley, Fredrylo Alberth Noel Joddy (Unknown)
Talakua, Mozart W. (Unknown)
Lesnussa, Yopi Andry (Unknown)



Article Info

Publish Date
01 Sep 2022

Abstract

For a simple, undirected graph G with, at most one isolated vertex and no isolated edges, a labeling f:E(G)→{1,2,…,k1} of positive integers to the edges of G is called irregular if the weights of each vertex of G has a different value. The integer k1 is then called the irregularity strength of G. If the number of vertices in G or the order of G is |G|, then the labeling μ:E(G)→{1,2,…,k2} is called modular irregular if the remainder of the weights of each vertex of G divided by |G| has a different value. The integer k2 is then called the modular irregularity strength of G. The disjoint union of two or more graphs, denoted by ‘+’, is an operation where the vertex and edge set of the result each be the disjoint union of the vertex and edge sets of the given graphs. This study discusses about the irregularity and modular irregularity strength of friendship graphs and some of its disjoint union, The result given is s(Fm ) = m + 1, ms(Fm ) = m + 1 and ms(rFm ) = rm + ⌈r/2⌉, where r denotes the number of copies of friendship graphs

Copyrights © 2022






Journal Info

Abbrev

barekeng

Publisher

Subject

Computer Science & IT Control & Systems Engineering Economics, Econometrics & Finance Energy Engineering Mathematics Mechanical Engineering Physics Transportation

Description

BAREKENG: Jurnal ilmu Matematika dan Terapan is one of the scientific publication media, which publish the article related to the result of research or study in the field of Pure Mathematics and Applied Mathematics. Focus and scope of BAREKENG: Jurnal ilmu Matematika dan Terapan, as follows: - Pure ...