Malcom: Indonesian Journal of Machine Learning and Computer Science
Vol. 2 No. 2 (2022): MALCOM October 2022

Perbandingan K-Means K-Medoids dan Fuzzy C-Means untuk Pengelompokan Data Pelanggan dengan Model LRFM: Comparison K-Means K-Medoids and Fuzzy C-Means for Clustering Customer Data with LRFM Model

Hamdi Syukron (UIN Sultan Syarif Kasim Riau)
Muhammad Fauzi Fayyad (UIN Sultan Syarif Kasim Riau)
Farin Junita Fauzan (UIN Sultan Syarif Kasim Riau)
Yulia Ikhsani (UIN Sultan Syarif Kasim Riau)
Umairah Rizkya Gurning (UIN Sultan Syarif Kasim Riau)



Article Info

Publish Date
13 Sep 2022

Abstract

Indonesia memiliki pasar yang potensial untuk perusahaan kosmetik karena memiliki jumlah penduduk yang berjumlah hampir 270 juta jiwa. Pertumbuhan industri kosmetik di Indonesia mengalami perkembangan yang pesat dengan persentase pertumbuhan 5,59% pada bulan agustus 2021 silam. Dengan pertumbuhan tersebut perusahaan kosmetik memiliki reseller yang tersebar diseluruh daerah Indonesia. Penelitian ini menggunakan data pelanggan dari salah satu reseller perusahaan kecantikan. Pelanggan mana yang sering berbelanja, produk mana yang sering mereka beli, dan klien mana yang paling setia adalah masalah umum yang sering muncul saat menjual produk kecantikan. Panjang, Kekinian, Frekuensi, dan Moneter, kadang-kadang dikenal sebagai LRFM, adalah teknik yang digunakan untuk menghitung nilai pelanggan berdasarkan riwayat transaksi mereka. Penelitian ini dilakukan untuk mengelompokan data pelanggan berdasarkan rentang waktu dan jumlah transaksi pembelian menggunakan algoritma clustering yaitu, k-means, k-medoids, dan fuzzy c-means. Harapannya, penelitian ini dapat ditentukan algoritma terbaik dalam pengelompokan data dengan membandingkan algoritma clustering K-Means, K-Medoids, dan Fuzzy C-Means dengan model LRFM. Hasil penelitian menunjukkan bahwa dalam pengelompokan data pelanggan dengan model LRFM algoritma K-Means lebih unggul dibanding K-Medoids dan Fuzzy C-means pada mengklasterisasi data pelanggan, denganĀ  dibuktikannya pada nilai validitas DBI terbaik dengan perolehan nilai yaitu 0,167 pada jumlah klaster yaitu 6.

Copyrights © 2022






Journal Info

Abbrev

malcom

Publisher

Subject

Computer Science & IT

Description

MALCOM: Indonesian Journal of Machine Learning and Computer Science is a scientific journal published by the Institut Riset dan Publikasi Indonesia (IRPI) in collaboration with several Universities throughout Riau and Indonesia. MALCOM will be published 2 (two) times a year, April and October, each ...