Yulia Ikhsani
UIN Sultan Syarif Kasim Riau

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Perbandingan K-Means K-Medoids dan Fuzzy C-Means untuk Pengelompokan Data Pelanggan dengan Model LRFM: Comparison K-Means K-Medoids and Fuzzy C-Means for Clustering Customer Data with LRFM Model Hamdi Syukron; Muhammad Fauzi Fayyad; Farin Junita Fauzan; Yulia Ikhsani; Umairah Rizkya Gurning
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 2 No. 2 (2022): MALCOM October 2022
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (405.186 KB) | DOI: 10.57152/malcom.v2i2.442

Abstract

Indonesia memiliki pasar yang potensial untuk perusahaan kosmetik karena memiliki jumlah penduduk yang berjumlah hampir 270 juta jiwa. Pertumbuhan industri kosmetik di Indonesia mengalami perkembangan yang pesat dengan persentase pertumbuhan 5,59% pada bulan agustus 2021 silam. Dengan pertumbuhan tersebut perusahaan kosmetik memiliki reseller yang tersebar diseluruh daerah Indonesia. Penelitian ini menggunakan data pelanggan dari salah satu reseller perusahaan kecantikan. Pelanggan mana yang sering berbelanja, produk mana yang sering mereka beli, dan klien mana yang paling setia adalah masalah umum yang sering muncul saat menjual produk kecantikan. Panjang, Kekinian, Frekuensi, dan Moneter, kadang-kadang dikenal sebagai LRFM, adalah teknik yang digunakan untuk menghitung nilai pelanggan berdasarkan riwayat transaksi mereka. Penelitian ini dilakukan untuk mengelompokan data pelanggan berdasarkan rentang waktu dan jumlah transaksi pembelian menggunakan algoritma clustering yaitu, k-means, k-medoids, dan fuzzy c-means. Harapannya, penelitian ini dapat ditentukan algoritma terbaik dalam pengelompokan data dengan membandingkan algoritma clustering K-Means, K-Medoids, dan Fuzzy C-Means dengan model LRFM. Hasil penelitian menunjukkan bahwa dalam pengelompokan data pelanggan dengan model LRFM algoritma K-Means lebih unggul dibanding K-Medoids dan Fuzzy C-means pada mengklasterisasi data pelanggan, denganĀ  dibuktikannya pada nilai validitas DBI terbaik dengan perolehan nilai yaitu 0,167 pada jumlah klaster yaitu 6.