Jurnal Computer Science and Information Technology (CoSciTech)
Vol 3 No 2 (2022): Jurnal Computer Science and Information Technology (CoSciTech)

Teknik SMOTE untuk Mengatasi Imbalance Data pada Deteksi Penyakit Stroke Menggunakan Algoritma Random Forest

Mualfah, Desti (Unknown)
Fadila, Wahyu (Unknown)
Firdaus, Rahmad (Unknown)



Article Info

Publish Date
17 Aug 2022

Abstract

Stroke merupakan penyakit yang berpotensi menyebabkan kelumpuhan bahkan kematian. Pada tahun 2022, stroke terdapat 12,2 juta kasus stroke baru yang menambah jumlah total penderita stroke sebesar 101,4 juta. Dari perolehan data maka diperlukan sebuah teknik yang mampu melakukan deteksi pada penyakit tersebut untuk membantu dalam mendeteksi penyakit stroke, dalam hal ini pendekatan machine learning sebagai salah satu solusi yang dapat digunakan untuk melakukan deteksi pada penyakit stroke. Namun sayangnya data yang diperoleh dalam mendeteki penyakit stroke ditemukan adanya imbalance class dalam menangani tidak imbangnya class sehingga dapat mempengaruhi hasil nilai akurasi dalam mendekteksi penyakit stroke, untuk itu dibutuhkan sebuah algoritma random forest dan metode SMOTE dalam menangani imbalance class. Output yang dihasilkan ialah berupa nilai akurasi, presisi, recall, dan f1-score pada algoritma random forest tanpa SMOTE sebesar 0.98, 0.69, 0.51, dan 0.51. Sedangkan algoritma random forest dengan SMOTE mendapatkan masing-masing sebesar 0.91, 0.92, 0.91, 0.91. Terjadi kenaikan signifikan pada presisi, recall, dan f1-score.

Copyrights © 2022






Journal Info

Abbrev

coscitech

Publisher

Subject

Computer Science & IT

Description

Jurnal CoSciTech (Computer Science and Information Technology) merupakan jurnal peer-review yang diterbitkan oleh Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Univeritas Muhammadiyah Riau (UMRI) sejak April tahun 2020. Jurnal CoSciTech terdaftar pada PDII LIPI dengan Nomor ISSN ...