Journal of Soft Computing Exploration
Vol. 3 No. 2 (2022): September 2022

Application of pest detection on vegetable crops using the cnn algorithm as a smart farm innovation to realize food security in the 4.0 era

Lestari, Apri Dwi (Unknown)
Nur Afan syarifudin (Unknown)
Yopi Julia Nurriski (Unknown)



Article Info

Publish Date
30 Sep 2022

Abstract

Pests and diseases are one of the factors that become obstacles in the cultivation of vegetables because they can cause a decrease in the quality and quantity of production. The more varied types of pests have different impacts on crops, so if farmers incorrectly identify the class of pests, the treatment will be ineffective. Therefore, we need a technology that can classify the types of pests on vegetable crops to maintain the quality and quality of the product as well as the abundant harvest. The classification model of pests on vegetables using the deep learning method using the Convolutional Neural Network (CNN) algorithm with a high level of accuracy is the solution to this problem. The application of artificial intelligence in the agricultural sector also supports smart agriculture in Indonesia. Based on the research that has been carried out, the application of pest classification on vegetable crops made by applying the CNN model using the Inception V3 - k-fold cross-validation method has a test accuracy rate of 99%, meaning that the application can perform pest classification correctly.

Copyrights © 2022






Journal Info

Abbrev

joscex

Publisher

Subject

Computer Science & IT

Description

Journal of Soft Computing Exploration is a journal that publishes manuscripts of scientific research papers related to soft computing. The scope of research can be from the theory and scientific applications as well as the novelty of related knowledge insights. Soft Computing: Artificial ...