Jurnal Informatika Terpadu
Vol 8 No 2 (2022): September, 2022

Penerapan Algoritma Multiclass Ensemble Support Vector Machine dengan Fungsi Kernel untuk Klasifikasi Human Activity

Firman Aziz (Universitas Pancasakti)
Syahrul Usman (Universitas Pancasakti)
Jeffry Jeffry (Universitas Pancasakti)
Nur Ayu Asrhi (Universitas Pancasakti)
M Rezky Armansyah (Universitas Pancasakti)



Article Info

Publish Date
04 Oct 2022

Abstract

Human Activity Recognition is a technology that introduces human body movement using an accelerometer, gyroscope, global positioning system, and camera. The early emergence of the support vector machine method was used to classify 2 classes, so development was needed to overcome multiclass problems and a large number of large-scale datasets resulted in suboptimal performance. The purpose of this paper is to apply the ensemble Support Vector Machine method in classifying the movement of walking, running, and climbing stairs based on accelerometer and gyroscope sensors on smartphones. And see the performance of the Ensemble Support Vector Machine method when using linear kernels and RBF. The results of the Support Vector Machine linear kernel accuracy of 79.66% and an increase of 88.01% after using the ensemble. While the accuracy for the Support Vector Machine kernel RBF is 79.51 and an increase of 88.04% after using the ensemble.

Copyrights © 2022






Journal Info

Abbrev

jit

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Education

Description

Jurnal Informatika Terpadu memuat jurnal ilmiah di bidang Ilmu Komputer, Sistem Informasi dan Teknik Informatika. Jurnal Informatika Terpadu diterbitkan oleh LPPM STT Nurul Fikri dengan periode dua kali dalam setahun, yakni pada bulan Maret dan ...