International Journal of Electrical and Computer Engineering
Vol 12, No 6: December 2022

Comparative study of optimization algorithms on convolutional network for autonomous driving

Fernando Martinez (Universidad Distrital Francisco José de Caldas)
Holman Montiel (Universidad Distrital Francisco José de Caldas)
Fredy Martinez (Universidad Distrital Francisco José de Caldas)



Article Info

Publish Date
01 Dec 2022

Abstract

he last 10 years have been the decade of autonomous vehicles. Advances in intelligent sensors and control schemes have shown the possibility of real applications. Deep learning, and in particular convolutional networks have become a fundamental tool in the solution of problems related to environment identification, path planning, vehicle behavior, and motion control. In this paper, we perform a comparative study of the most used optimization strategies on the convolutional architecture residual neural network (ResNet) for an autonomous driving problem as a previous step to the development of an intelligent sensor. This sensor, part of our research in reactive systems for autonomous vehicles, aims to become a system for direct mapping of sensory information to control actions from real-time images of the environment. The optimization techniques analyzed include stochastic gradient descent (SGD), adaptive gradient (Adagrad), adaptive learning rate (Adadelta), root mean square propagation (RMSProp), Adamax, adaptive moment estimation (Adam), nesterov-accelerated adaptive moment estimation (Nadam), and follow the regularized leader (Ftrl). The training of the deep model is evaluated in terms of convergence, accuracy, recall, and F1-score metrics. Preliminary results show a better performance of the deep network when using the SGD function as an optimizer, while the Ftrl function presents the poorest performances.

Copyrights © 2022






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...