Holman Montiel
Universidad Distrital Francisco José de Caldas

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Hybrid fuzzy-sliding grasp control for underactuated robotic hand Fredy Martinez; Holman Montiel; Edwar Jacinto
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i4.12678

Abstract

A major part of the success of human-robots integration requires the development of robotic platforms capable of interacting in human environments. Human beings have an environment designed for their physical and morphological capacity, robots must adapt to these conditions. This paper presents a fuzzy-sliding hybrid grasp control for a five-finger robotic hand. As a design principle, the scheme takes into account the minimum force required on the object to prevent the object from slipping. The robotic hand uses force sensors on each finger to determine the grasp state. The control is designed with two control surfaces, one when there is slippage, the other when there is no slippage. For each surface, control rules are defined and unified by means of a fuzzy inference block. The proposed scheme is evaluated in the laboratory for different objects, which include spherical and cylindrical elements. In all cases, an excellent grasp was observed without producing deformations in the fragile objects.
Comparative study of optimization algorithms on convolutional network for autonomous driving Fernando Martinez; Holman Montiel; Fredy Martinez
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6363-6372

Abstract

he last 10 years have been the decade of autonomous vehicles. Advances in intelligent sensors and control schemes have shown the possibility of real applications. Deep learning, and in particular convolutional networks have become a fundamental tool in the solution of problems related to environment identification, path planning, vehicle behavior, and motion control. In this paper, we perform a comparative study of the most used optimization strategies on the convolutional architecture residual neural network (ResNet) for an autonomous driving problem as a previous step to the development of an intelligent sensor. This sensor, part of our research in reactive systems for autonomous vehicles, aims to become a system for direct mapping of sensory information to control actions from real-time images of the environment. The optimization techniques analyzed include stochastic gradient descent (SGD), adaptive gradient (Adagrad), adaptive learning rate (Adadelta), root mean square propagation (RMSProp), Adamax, adaptive moment estimation (Adam), nesterov-accelerated adaptive moment estimation (Nadam), and follow the regularized leader (Ftrl). The training of the deep model is evaluated in terms of convergence, accuracy, recall, and F1-score metrics. Preliminary results show a better performance of the deep network when using the SGD function as an optimizer, while the Ftrl function presents the poorest performances.