INOVTEK Polbeng - Seri Informatika
Vol 7, No 2 (2022)

ANALISIS PENGELOMPOKAN WILAYAH PENYEBARAN COVID-19 di INDONESIA DENGAN METODE CLUSTERING MENGGUNAKAN ALGORITMA K-MEANS dan K-MEDOIDS

Chandra Halim (Universitas Kristen Satya Wacana)
Hindriyanto Dwi Purnomo (Universitas Kristen Satya Wacana)
Teguh Wahyono (Universitas Kristen Satya Wacana)



Article Info

Publish Date
27 Nov 2022

Abstract

Corona virus merupakan sebuah penyakit yang menyerang infeksi saluran pernafasan manusia yang umumnya ringan, seperti flu dan batuk. Jika tidak ada penanganan yang cepat akan mengakibatkan kematian. Virus ini dengan cepat menular ke manusia ke manusia melalui udara dan bersentuhan. Untuk mengurangi penyebaran virus dibutuhkan klastrisasi menggunakan algortima K-Means dan K-Medoids, metode ini bekerja untuk mempartisi objek kedalam kelompok. Klasterisasi tersebut diperoleh berdasarkan data total kasus, total kematian dan total kesembuhan. Berdasarkan hasil dari penelitian ini, algoritma K-Means lebih optimal dari pada K-Medoids pada mengklasterisasi daerah  - daerah di Indonesia. Dibuktikan pada nilai terbaik Davies Bouldin Index dari algoritma K-Means sebesar 0.158 dengan k = 4 dan algoritma K-Medoids sebesar 0.806 dengan k = 5. Hasil klasterisasi berdasarkan  nilai yang paling optimal yaitu algoritma K-Means, memperlihatkan cluster 1 Jawa Tengah dan Jawa Timur menjadi yang teratas dikarenakan tingkat kasus serta tingkat kematian yang tinggi.

Copyrights © 2022






Journal Info

Abbrev

ISI

Publisher

Subject

Computer Science & IT

Description

Jurnal Inovasi dan Teknologi Seri Informatika (Jurnal INOVTEK Polbeng - Seri Informatika) Politeknik Negeri Bengkalis merupakan jurnal informatika berbasis penelitian ilmiah. Jurnal ini diharapkan dapat sebagai wadah akademisi, peneliti dan praktisi menyebarkan hasil penelitian. Jurnal INOVTEK ...