Journal of Information Technology and Computer Science (JOINTECS)
Vol 7, No 3 (2022)

Klasifikasi Ayam Petelur Menggunakan Artificial Neural Network dan Decision Tree

Firman Nurdiansyah (Universitas Widyagama Malang)
Fitri Marisa (Universitas Widyagama Malang)



Article Info

Publish Date
17 Oct 2022

Abstract

Indonesia merupakan negara yang sangat berkembang jumlah penduduknya. Seiring dengan perkembangan tahun ke tahun terus diimbangi dengan kesadaran akan arti penting peningkatan gizi dalam kehidupan. Oleh karena itu diperlukan sistem klasifikasi ayam petelur menggunakan Artificial Neural Network dan Decision Tree. Penelitian ini bertujuan untuk mengklasifikasikan jenis-jenis dari ayam petelur yang ada di Indonesia. Karena banyaknya jenis ayam, nantinya akan memudahkan masyarakat ataupun pengusaha ayam dalam memilih ayam petelur yang berkualitas baik. Disisi lain juga dapat meningkatkan ekonomi masyarakat dengan cara menjual sebuah ayam petelur dengan kualitas yang baik. Dalam pengujian yang dihasilkan Artificial Neural Network lebih baik dalam proses pengujiannya. Hasil membuktikan pada split ratio 50:50 tekstur dan bentuk dengan nilai precision mendapatkan nilai mencapai 0.680, recall mendapatkan nilai 0.521, f-measure mendapatkan nilai 0.600 dan accuracy juga memiliki nilai tertinggi mencapai 92.50% pada split ratio 50:50 antara data training dan data testing. Hasil membuktikan dengan klasifikasi menggunakan Artificial Neural Network menghasilkan precision, recall, f-measure dan accuracy tertinggi dibandingkan decision tree.

Copyrights © 2022






Journal Info

Abbrev

jointecs

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management Electrical & Electronics Engineering Engineering Languange, Linguistic, Communication & Media Library & Information Science Mathematics

Description

JOINTECS terbit 2 (dua) kali dalam setahun, yaitu pada bulan Agustus dan Pebruari dengan versi cetak p-ISSN: 2541-3619 dan versi elektronik dengan sistem OJS dengan e-ISSN: 2541-6448. (medio online) yang mewajibkan setiap naskah yang masuk, proses review, editing, sampai pada publikasi, dan semua ...