Emerging Science Journal
Vol 6, No 6 (2022): December

Data Mining Applications in Banking Sector While Preserving Customer Privacy

Özge Doğuç (Department of Management Information Systems, Istanbul Medipol University, Istanbul,)



Article Info

Publish Date
28 Sep 2022

Abstract

In real-life data mining applications, organizations cooperate by using each other’s data on the same data mining task for more accurate results, although they may have different security and privacy concerns. Privacy-preserving data mining (PPDM) practices involve rules and techniques that allow parties to collaborate on data mining applications while keeping their data private. The objective of this paper is to present a number of PPDM protocols and show how PPDM can be used in data mining applications in the banking sector. For this purpose, the paper discusses homomorphic cryptosystems and secure multiparty computing. Supported by experimental analysis, the paper demonstrates that data mining tasks such as clustering and Bayesian networks (association rules) that are commonly used in the banking sector can be efficiently and securely performed. This is the first study that combines PPDM protocols with applications for banking data mining. Doi: 10.28991/ESJ-2022-06-06-014 Full Text: PDF

Copyrights © 2022






Journal Info

Abbrev

ESJ

Publisher

Subject

Environmental Science

Description

Emerging Science Journal is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering and sciences. While it encourages a broad spectrum of contribution in the engineering and sciences. Articles of interdisciplinary nature are ...