Özge Doğuç
Department of Management Information Systems, Istanbul Medipol University, Istanbul,

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Data Mining Applications in Banking Sector While Preserving Customer Privacy Özge Doğuç
Emerging Science Journal Vol 6, No 6 (2022): December
Publisher : Ital Publication

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/ESJ-2022-06-06-014

Abstract

In real-life data mining applications, organizations cooperate by using each other’s data on the same data mining task for more accurate results, although they may have different security and privacy concerns. Privacy-preserving data mining (PPDM) practices involve rules and techniques that allow parties to collaborate on data mining applications while keeping their data private. The objective of this paper is to present a number of PPDM protocols and show how PPDM can be used in data mining applications in the banking sector. For this purpose, the paper discusses homomorphic cryptosystems and secure multiparty computing. Supported by experimental analysis, the paper demonstrates that data mining tasks such as clustering and Bayesian networks (association rules) that are commonly used in the banking sector can be efficiently and securely performed. This is the first study that combines PPDM protocols with applications for banking data mining. Doi: 10.28991/ESJ-2022-06-06-014 Full Text: PDF
Diagnosis of Covid-19 Via Patient Breath Data Using Artificial Intelligence Özge Doğuç; Gökhan Silahtaroğlu; Zehra Nur Canbolat; Kailash Hambarde; Ahmet Alperen Yiğitbaşı; Hasan Gökay; Mesut Yılmaz
Emerging Science Journal Vol 7 (2023): Special Issue "COVID-19: Emerging Research"
Publisher : Ital Publication

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/ESJ-2023-SPER-08

Abstract

Using machine learning algorithms for the rapid diagnosis and detection of the COVID-19 pandemic and isolating the patients from crowded environments are very important to controlling the epidemic. This study aims to develop a point-of-care testing (POCT) system that can detect COVID-19 by detecting volatile organic compounds (VOCs) in a patient's exhaled breath using the Gradient Boosted Trees Learner Algorithm. 294 breath samples were collected from 142 patients at Istanbul Medipol Mega Hospital between December 2020 and March 2021. 84 cases out of 142 resulted in negatives, and 58 cases resulted in positives. All these breath samples have been converted into numeric values through five air sensors. 10% of the data have been used for the validation of the model, while 75% of the test data have been used for training an AI model to predict the coronavirus presence. 25% have been used for testing. The SMOTE oversampling method was used to increase the training set size and reduce the imbalance of negative and positive classes in training and test data. Different machine learning algorithms have also been tried to develop the e-nose model. The test results have suggested that the Gradient Boosting algorithm created the best model. The Gradient Boosting model provides 95% recall when predicting COVID-19 positive patients and 96% accuracy when predicting COVID-19 negative patients. Doi: 10.28991/ESJ-2023-SPER-08 Full Text: PDF