Knowledge Engineering and Data Science
Vol 5, No 1 (2022)

Optimized Three Deep Learning Models Based-PSO Hyperparameters for Beijing PM2.5 Prediction

Andri Pranolo ((SCOPUS ID : 56572821900, Universitas Ahmad Dahlan))
Yingchi Mao (Unknown)
Aji Prasetya Wibawa (Unknown)
Agung Bella Putra Utama (Unknown)
Felix Andika Dwiyanto (Unknown)



Article Info

Publish Date
07 Jun 2022

Abstract

Deep learning is a machine learning approach that produces excellent performance in various applications, including natural language processing, image identification, and forecasting. Deep learning network performance depends on the hyperparameter settings. This research attempts to optimize the deep learning architecture of Long short term memory (LSTM), Convolutional neural network (CNN), and Multilayer perceptron (MLP) for forecasting tasks using Particle swarm optimization (PSO), a swarm intelligence-based metaheuristic optimization methodology: Proposed M-1 (PSO-LSTM), M-2 (PSO-CNN), and M-3 (PSO-MLP). Beijing PM2.5 datasets was analyzed to measure the performance of the proposed models. PM2.5 as a target variable was affected by dew point, pressure, temperature, cumulated wind speed, hours of snow, and hours of rain. The deep learning network inputs consist of three different scenarios: daily, weekly, and monthly. The results show that the proposed M-1 with three hidden layers produces the best results of RMSE and MAPE compared to the proposed M-2, M-3, and all the baselines. A recommendation for air pollution management could be generated by using these optimized models.

Copyrights © 2022






Journal Info

Abbrev

keds

Publisher

Subject

Computer Science & IT Engineering

Description

Knowledge Engineering and Data Science (2597-4637), KEDS, brings together researchers, industry practitioners, and potential users, to promote collaborations, exchange ideas and practices, discuss new opportunities, and investigate analytics frameworks on data-driven and knowledge base ...