Civil Engineering Journal
Vol 9, No 1 (2023): January

Greywater Flow Characteristics for Closed Channel Maintenance

Ratna Bachrun (Department of Civil Engineering, Faculty of Engineering, Muhammadiyah Kendari University, Kendari 93231,)
. Santi (Department of Architectural Engineering, Faculty of Engineering, Haluoleo University, Kendari 93232,)
Surya Baskara (Department of Civil Engineering, Faculty of Engineering, Muhammadiyah Kendari University, Kendari 93231,)



Article Info

Publish Date
01 Jan 2023

Abstract

Knowing the characteristics of wastewater and its interaction with the channel is crucial to finding a suitable model and maintenance method to solve the closed channel problem. The purpose of this study is to find the relationship and how much it influences the characteristics of wastewater in closed channels and analyze the limit deposit velocity (LDV) of wastewater so that there is no deposition. The parameters used to analyze wastewater characteristics are density, oil and fat, specific gravity, total suspended solids, total dissolved solids, and kinematic viscosity. The parameters used to analyze the flow characteristics in closed channels are velocity, discharge, Reynolds number, friction coefficient, energy loss, and hydraulic gradient. The method used is experimental research by simulating a closed-channel model prototype. The closed channel model is made from an acrylic pipe with a length of 6 m and a pipe diameter of 0.064 m. Simulations on each wastewater sample and the discharge variations used were 0.005, 0.004, 0.003, and 0.0015 m3/s. Velocity measurements at a 0.5 pipe water level height and distances of 0, 2, 4, and 6 m. The results showed that the nature and composition of the wastewater the flow velocity. The large value of wastewater parameters shows that the flow velocity is small. The wastewater content is considered a load that must be transported to the end of the closed channel. When the discharge increases, the velocity will increase, Reynolds number will increase, and the energy loss will be large, while the friction coefficient is inversely proportional to Reynolds number. The velocities of clean water samples are 2.90 - 1.07 m/s, tofu - making is 2.83 - 1.07 m/s, household is 2.74 - 0.85 m/s, laundry is 2.84 - 1.03 m/s, and the workshop is 2.54 - 0.66 m/s. The limit deposit velocity (LDV) for household wastewater is 1.49 m/s to prevent deposition in closed channels. Doi: 10.28991/CEJ-2023-09-01-03 Full Text: PDF

Copyrights © 2023






Journal Info

Abbrev

cej

Publisher

Subject

Civil Engineering, Building, Construction & Architecture

Description

Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, ...