Informatik : Jurnal Ilmu Komputer
Vol 18, No 3 (2022): Desember 2022

Perbandingan Model Decision Tree, Naive Bayes dan Random Forest untuk Prediksi Klasifikasi Penyakit Jantung

Deo Haganta Depari (Universitas Pembangunan Nasional Veteran Jakarta)
Yuni Widiastiwi (Universitas Pembangunan Nasional Veteran Jakarta)
Mayanda Mega Santoni (Universitas Pembangunan Nasional Veteran Jakarta)



Article Info

Publish Date
28 Dec 2022

Abstract

Jantung sebuah rongga organ berotot yang memompa darah melalui pembuluh darah dengan kontraksi berirama yang terus berulang merupakan salah satu organ manusia yang berperan dalam sistem peredaran darah. Jantung sebagai salah organ terpenting dalam tubuh memiliki resiko kematian jika ada kelainan yang terjadi pada jantung. Beberapa masalah pada jantung dibagi menjadi dua yaitu penyakit jantung dan serangan jantung. WHO berdasarkan data menyatakan bahwa ada sebanyak 7,3 juta penduduk di dunia yang meninggal dikarenakan penyakit jantung. Penelitian ini menggunakan kumpulan data pasien penyakit jantung “Personal Key Indicators of Heart Disease” dan menerapkan algoritma klasifikasi Decision Tree, Naive Bayes dan Random Forest. Tujuan dari penelitian ini adalah untuk bagaimana mengolah dan melakukan analisa data, bagaimana penerapan metode Decision Tree, Naive Bayes dan Random Forest pada klasifikasi penyakit jantung, kemudian bagaimana hasil akurasi metode-metode yang digunakan tersebut, bagaimana hasil perbandingan antara Decision Tree, Naive Bayes dan Random Forests yang digunakan dan metode apa yang merupakan terbaik dari klasifikasi penyakit jantung.  Hasil dari penelitian ini adalah evaluasi performa metode klasifikasi Decision Tree, Naive Bayes dan Random Forest. Dimana nilai akurasi metode Decision Tree sebesar  0.71%, Naive Bayes sebesar 0.72% dan Random Forest sebesar 0.75%.

Copyrights © 2022






Journal Info

Abbrev

informatik

Publisher

Subject

Computer Science & IT

Description

Informatik menerima artikel ilmiah dengan area penelitian pada area Internet Business & Application, Networking & Cyber Security, Statistics & Computation, Elearning & Multimedia, Robotics & ...