Jurnal ULTIMATICS
Vol 14 No 2 (2022): Ultimatics : Jurnal Teknik Informatika

Topic Modelling Using VSM-LDA For Document Summarization

Luthfi Atikah (Politeknik Astra)
Novrindah Alvi Hasanah (Universitas Islam Negeri Maulana Malik Ibrahim Malang)
Agus Zainal Arifin (Institut Teknologi Sepuluh Nopember)



Article Info

Publish Date
30 Dec 2022

Abstract

Summarization is a process to simplify the contents of a document by eliminating elements that are considered unimportant but do not reduce the core meaning the document wants to convey. However, as is known, a document will contain more than one topic. So it is necessary to identify the topic so that the summarization process is more effective. Latent Dirichlet Allocation (LDA) is a commonly used method of identifying topics. However, when running a program on a different dataset, LDA experiences "order effects", that is, the resulting topic will be different if the train data sequence is changed. In the same document input, LDA will provide inconsistent topics resulting in low coherence values. Therefore, this paper proposes a topic modelling method using a combination of LDA and VSM (Vector Space Model) for automatic summarization. The proposed method can overcome order effects and identify document topics that are calculated based on the TF-IDF weight on VSM generated by LDA. The results of the proposed topic modeling method on the 1300 Twitter data resulted in the highest coherence value reaching 0.72. The summary results obtained Rouge 1 is 0.78, Rouge 2 is 0.67 dan Rouge L is 0.80.

Copyrights © 2022






Journal Info

Abbrev

TI

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

Jurnal ULTIMATICS merupakan Jurnal Program Studi Teknik Informatika Universitas Multimedia Nusantara yang menyajikan artikel-artikel penelitian ilmiah dalam bidang analisis dan desain sistem, programming, algoritma, rekayasa perangkat lunak, serta isu-isu teoritis dan praktis yang terkini, mencakup ...