p-Index From 2021 - 2026
1.907
P-Index
Claim Missing Document
Check
Articles

SISTEM TEMU KEMBALI DOKUMEN TEKS DENGAN PEMBOBOTAN TF-IDF DAN LCS Saadah, Munjiah Nur; Atmagi, Rigga Widar; Rahayu, Dyah S.; Arifin, Agus Zainal
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 11, No 1, Januari 2013
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (612.866 KB) | DOI: 10.12962/j24068535.v11i1.a16

Abstract

Sistem temu kembali dokumen teks membutuhkan metode yang mampu mengembalikan sejumlah dokumen yang memiliki relevansi tinggi sesuai dengan permintaan pengguna. Salah satu tahapan penting dalam proses representasi teks adalah proses pembobotan. Penggunaan LCS dalam penyesuaian bobot Tf -Idf mempertimbangkan kemunculan urutan kata yang sama antara query dan teks di dalam dokumen. Adanya dokumen yang sangat panjang namun tidak relevan menyebabkan bobot yang dihasilkan tidak mampu merepresentasikan nilai relevansi dokumen. Penelitian ini mengusulkan penggunaan metode LCS yang memberikan bobot urutan kata dengan mempertimbangkan panjang dokumen terkait dengan rata-rata panjang dokumen dalam korpus. Metode ini mampu melakukan pengembalian dokumen teks secara efektif. Penambahan fitur urutan kata dengan normalisasi rasio panjang dokumen terhadap keseluruhan dokumen dalam korpus menghasilkan nilai presisi dan recall yang sama baiknya dengan metode sebelumnya.
Perangkingan Dokumen Berbahasa Arab Menggunakan Latent Semantic Indexing Wahib, Aminul; Pasnur, Pasnur; Santika, Putu Praba; Arifin, Agus Zainal
Jurnal Buana Informatika Vol 6, No 2 (2015): Jurnal Buana Informatika Volume 6 Nomor 2 April 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (417.199 KB)

Abstract

Berbagai metode perangkingan dokumen dalam aplikasi InformationRetrieval telah dikembangkan dan diimplementasikan. Salah satu metode yangsangat populer adalah perangkingan dokumen menggunakan vector space modelberbasis pada nilai term weighting TF.IDF. Metode tersebut hanya melakukanpembobotan term berdasarkan frekuensi kemunculannya pada dokumen tanpamemperhatikan hubungan semantik antar term. Dalam kenyataannya hubungansemantik antar term memiliki peranan penting untuk meningkatkan relevansi hasilpencarian dokumen. Penelitian ini mengembangkan metode TF.IDF.ICF.IBFdengan menambahkan Latent Semantic Indexing untuk menemukan hubungansemantik antar term pada kasus perangkingan dokumen berbahasa Arab. Datasetyang digunakan diambil dari kumpulan dokumen pada perangkat lunak MaktabahSyamilah. Hasil pengujian menunjukkan bahwa metode yang diusulkanmemberikan nilai evaluasi yang lebih baik dibandingkan dengan metodeTF.IDF.ICF.IBF. Secara berurut nilai f-measure metode TF.IDF.ICF.IBF.LSIpada ambang cosine similarity 0,3, 0,4, dan 0,5 adalah 45%, 51%, dan 60%. Namun metode yang disulkan memiliki waktu komputasi rata-rata lebih tinggidibandingkan dengan metode TF.IDF.ICF.IBF sebesar 2 menit 8 detik.
Optimasi Pembobotan pada Query Expansion dengan Term Relatedness to Query-Entropy based (TRQE) Ludviani, Resti; Hayati, Khadijah F.; Arifin, Agus Zainal; Purwitasari, Diana
Jurnal Buana Informatika Vol 6, No 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (297.228 KB)

Abstract

Abstract. An appropriate selection term for expanding a query is very important in query expansion. Therefore, term selection optimization is added to improve query expansion performance on document retrieval system. This study proposes a new approach named Term Relatedness to Query-Entropy based (TRQE) to optimize weight in query expansion by considering semantic and statistic aspects from relevance evaluation of pseudo feedback to improve document retrieval performance. The proposed method has 3 main modules, they are relevace feedback, pseudo feedback, and document retrieval. TRQE is implemented in pseudo feedback module to optimize weighting term in query expansion. The evaluation result shows that TRQE can retrieve document with the highest result at precission of 100% and recall of 22,22%. TRQE for weighting optimization of query expansion is proven to improve retrieval document.     Keywords: TRQE, query expansion, term weighting, term relatedness to query, relevance feedback Abstrak..Pemilihan term yang tepat untuk memperluas queri merupakan hal yang penting pada query expansion. Oleh karena itu, perlu dilakukan optimasi penentuan term yang sesuai sehingga mampu meningkatkan performa query expansion pada system temu kembali dokumen. Penelitian ini mengajukan metode Term Relatedness to Query-Entropy based (TRQE), sebuah metode untuk mengoptimasi pembobotan pada query expansion dengan memperhatikan aspek semantic dan statistic dari penilaian relevansi suatu pseudo feedback sehingga mampu meningkatkan performa temukembali dokumen. Metode yang diusulkan memiliki 3 modul utama yaitu relevan feedback, pseudo feedback, dan document retrieval. TRQE diimplementasikan pada modul pseudo feedback untuk optimasi pembobotan term pada ekspansi query. Evaluasi hasil uji coba menunjukkan bahwa metode TRQE dapat melakukan temukembali dokumen dengan hasil terbaik pada precision  100% dan recall sebesar 22,22%.Metode TRQE untuk optimasi pembobotan pada query expansion terbukti memberikan pengaruh untuk meningkatkan relevansi pencarian dokumen.Kata Kunci: TRQE, ekspansi query, pembobotan term, term relatedness to query, relevance feedback
Klasterisasi Jenis Musik Menggunakan Kombinasi Algoritma Neural Network, K-Means dan Particle Swarm Optimization Sankoh, Alhaji Sheku; Musthafa, Ahmad Reza; Rosadi, Muhammad Imron; Arifin, Agus Zainal
Jurnal Buana Informatika Vol 6, No 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (845.726 KB)

Abstract

Abstract. Having a number of audio files in a directory could result to unstructured arrangement of files. This will cause some difficulties for users in sorting a collection of audio files based on a particular category of music. In some previous studies, researchers used a method conducting to group documents on a web page. However, those studies were not carried out on file containing documents such as audio files; relatively they were conducted on files that contain text documents. In this study, we develop a method of grouping files using a combination of pre-processing approach, neural networks, k-means, and particle swarm optimization to obtain a form of audio file collections that are group based on the types of music. The result of this study is a system with improved method of grouping audio files based on the type of music. The pre-processing stage has therefore produced the best results on this approach based on spectrum analysis melody and bass guitar, which offers a value precision 95%, 100% recall and an F-Measure 97.44%.Keywords: Cluster, Music, NN, K-Means, PSO Abstrak. Banyaknya file audio pada suatu direktori membuat sususan file tidak terstruktur. Hal ini akan menyulitkan pengguna untuk mengurutkan bahkan memilah kumpulan file audio berdasarkan kategori tertentu, khususnya kategori berdasarkan jenis musik. Pada penelitian sebelumnya, dilakukan pengelompokan dokumen pada suatu halaman website. Namun hal tersebut tidak dilakukan pada file selain dokumen, seperti file audio. Penelitian ini bertujuan untuk mengembangkan metode pengelompokan file berupa kombinasi pendekatan pre-processing, neural network, k-means, dan particle swarm optimization dengan masukan berupa file audio sehingga diperoleh keluaran berupa kumpulan file audio yang telah terkelompok berdasarkan jenis musik. Hasil dari penelitian ini yaitu berupa suatu sistem dengan pengembangan metode dalam pengelompokan file audio berdasarkan jenis musik. Metode pada tahap pre-processing memiliki hasil terbaik pada pendekatan berdasarkan analisa spectrum melodi gitar dan bass, di mana memiliki nilai precission 95%, recall 100% dan F-Measure 97,44%. Kata kunci: Klaster, Musik, NN, K-Means, PSO
MULTI-DOCUMENT SUMMARIZATION BASED ON SENTENCE CLUSTERING IMPROVED USING TOPIC WORDS Lukmana, Indra; Swanjaya, Daniel; Kurniawardhani, Arrie; Arifin, Agus Zainal; Purwitasari, Diana
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 12, No 2, Juli 2014
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (292.988 KB) | DOI: 10.12962/j24068535.v12i2.a317

Abstract

Informasi dalam bentuk teks berita telah menjadi salah satu komoditas yang paling penting dalam era informasi ini. Ada banyak berita yang dihasilkan sehari-hari, tetapi berita-berita ini sering memberikan konten kontekstual yang sama dengan narasi berbeda. Oleh karena itu, diperlukan metode untuk mengumpulkan informasi ini ke dalam ringkasan sederhana. Di antara sejumlah subtugas yang terlibat dalam peringkasan multi-dokumen termasuk ekstraksi kalimat, deteksi topik, ekstraksi kalimat representatif, dan kalimat rep-resentatif. Dalam tulisan ini, kami mengusulkan metode baru untuk merepresentasikan kalimat ber-dasarkan kata kunci dari topic teks menggunakan Latent Dirichlet Allocation (LDA). Metode ini terdiri dari tiga langkah dasar. Pertama, kami mengelompokkan kalimat di set dokumen menggunakan kesamaan histogram pengelompokan (SHC). Selanjutnya, peringkat cluster menggunakan klaster penting. Terakhir, kalimat perwakilan yang dipilih oleh topik diidentifikasi pada LDA. Metode yang diusulkan diuji pada dataset DUC2004. Hasil penelitian menunjukkan rata-rata 0,3419 dan 0,0766 untuk ROUGE-1 dan ROUGE-2, masing-masing. Selain itu, dari pembaca prespective, metode kami diusulkan menyajikan pengaturan yang koheren dan baik dalam memesan kalimat representatif, sehingga dapat mempermudah pemahaman bacaan dan mengurangi waktu yang dibutuhkan untuk membaca ringkasan.
TERM WEIGHTING BASED ON INDEX OF GENRE FOR WEB PAGE GENRE CLASSIFICATION Sugiyanto, Sugiyanto; Rozi, Nanang Fakhrur; Putri, Tesa Eranti; Arifin, Agus Zainal
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 12, No 1, Januari 2014
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (402.086 KB) | DOI: 10.12962/j24068535.v12i1.a43

Abstract

Automating the identification of the genre of web pages becomes an important area in web pages classification, as it can be used to improve the quality of the web search result and to reduce search time. To index the terms used in classification, generally the selected type of weighting is the document-based TF-IDF. However, this method does not consider genre, whereas web page documents have a type of categorization called genre. With the existence of genre, the term appearing often in a genre should be more significant in document indexing compared to the term appearing frequently in many genres despites its high TF-IDF value. We proposed a new weighting method for web page documents indexing called inverse genre frequency (IGF). This method is based on genre, a manual categorization done semantically from previous research. Experimental results show that the term weighting based on index of genre (TF-IGF) performed better compared to term weighting based on index of document (TF-IDF), with the highest value of accuracy, precision, recall, and F-measure in case of excluding the genre-specific keywords were 78%, 80.2%, 78%, and 77.4% respectively, and in case of including the genre-specific keywords were 78.9%, 78.7%, 78.9%, and 78.1% respectively.
SEGMENTASI CITRA PANORAMIK GIGI MENGGUNAKAN SIMILARITAS ANTAR GRAY LEVEL BERDASARKAN INDEX OF FUZZINESS Pratamasunu, Gulpi Qorik Oktagalu; Arifin, Agus Zainal; Yuniarti, Anny; Wijaya, Arya Yudhi; Khotimah, Wijayanti Nurul; Navastara, Dini Adni
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 14, No 1, Januari 2016
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v14i1.a513

Abstract

Metode segmentasi citra berdasarkan teori fuzzy dan similaritas antar gray level mampu mengatasi masalah ambiguitas gray level dan pencahayaan yang tidak merata yang biasa ditemui pada citra medis. Namun, segmentasi dengan penentuan initial seeds-nya berdasarkan jumlah piksel minimum menghasilkan citra yang kurang baik saat diterapkan pada citra dengan kontras yang rendah, seperti yang terdapat pada citra panoramik gigi. Pada penelitian ini diusulkan metode segmentasi citra panoramik gigi dengan penentuan initial seeds berdasarkan index of fuzziness terbesar pada histogram. Histogram dibagi kedalam tiga daerah berdasarkan posisi dari pusat fuzzy region. Kemudian, proses pengukuran similaritas antar gray level yang berada pada fuzzy region dilakukan untuk menemukan threshold yang optimal. Performa metode yang diusulkan diuji menggunakan citra panoramik gigi. Evaluasi performa dilakukan dengan menghitung nilai Misclassification Error antara citra hasil segmentasi dengan citra ground truth. Hasil evaluasi menunjukkan bahwa hasil segmentasi metode yang diusulkan pada citra panoramik gigi memiliki performa yang lebih baik dibandingkan dengan hasil segmentasi dari metode Otsu.
Sistem Informasi Absensi Haul Berbasis Web di Pondok Pesantren Muhyiddin Surabaya Jannah, Erliyah Nurul; Arifin, Agus Zainal
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 1, No 1 (2015): Januari-Juni
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (946.067 KB) | DOI: 10.26594/register.v1i1.405

Abstract

Teknologi informasi saat ini telah menjadi kebutuhan bagi hampir semua instansi, baik pemerintah maupun swasta. Tak terkecuali pondok pesantren, khususnya Pondok Pesantren Muhyiddin Surabaya. Berbagai permasalahan di pondok pesantren membutuhkan bantuan teknologi informasi dalam penyelesaiannya. Salah satunya adalah permasalahan pencatatan kehadiran peserta dalam suatu acara tertentu seperti acara Haul. Haul merupakan acara tahunan yang bertujuan untuk memperingati hari lahirnya Nabi Muhammad SAW. Acara Haul di PP. Muhyiddin mendatangkan lebih dari seribu peserta yang merupakan penghafal Quran. Panitia Haul harus mengabsen peserta satu persatu serta menempatkannya ke majelis-majelis berdasarkan urutan kedatangan dan kota asal. Sistem informasi absensi yang ada masih berbasis desktop dan hanya mampu digunakan untuk mengabsen peserta saja. Sistem tersebut belum mampu melakukan pembagian majelis peserta secara otomatis. Padahal proses pembagian majelis inilah yang menyebabkan proses absensi memakan waktu lama. Oleh sebab itu, dibuatlah sebuah Sistem Informasi Absensi Haul yang berbasis web. Sistem ini diharapkan mampu untuk membuat proses absensi pada acara Haul menjadi lebih efisien. Dari hasil pengujian sistem yang telah dilakukan, dalam satu menit sistem dapat digunakan untuk mengabsen sepuluh peserta, membagi peserta tersebut ke majelis-majelis, dan mencetak kartu peserta Haul.
Membatasi k-Ketenggaan Simpul dalam Pembangkitan Random Graph Metode Erdos Royi untuk Meningkatkan Kinerja Komputasi Abidin, Zainal; Arifin, Agus Zainal
CAUCHY Vol 1, No 2 (2010): CAUCHY
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (425.536 KB) | DOI: 10.18860/ca.v1i2.1706

Abstract

Edges generation by random graph erdos-royi methods was needed high computation, it’s caused low performance. In fact, edge generation was used frequently with many nodes. this paper is described a node restriction by k-nearest neighbour on edge generation of random graph erdos royi method. Result of noderestriction by k-nearest neighbour can be reduced computation time.
Segmentasi Citra Ikan Tuna Dengan Otomatisasi Parameter Dbscan Menggunakan Jumlah Titik Puncak Pada Histogram Saputra, Wanvy Arifha; Chandranegara, Didih Rizki; Arifin, Agus Zainal
POROS TEKNIK Vol. 10 No. 1 (2018)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/porosteknik.v10i1.658

Abstract

Segmentasi pada citra ikan tuna menggunakan Density-Based Spatial Clustering of Application (DBSCAN) membutuhkan dua parameter utama, yaitu Eps dan MinPts. Parameter tersebut dapat melakukan segmentasi citra tanpa mengetahui jumlah kluster. Setiap citra memiliki nilai parameter yang berbeda untuk mendapatkan hasil segmentasi yang terbaik. Input nilai parameter dengan metode manual memiliki kelemahan dalam mendapatkan nilai yang optimal dan secara subjektif dalam menentukan nilai parameter tersebut. Kelemahan dalam mendapatkan nilai parameter yang optimal dapat menyebabkan nilai parameter yang salah dan akan berpengaruh pada hasil segmentasi dari setiap citra. Kami mengajukan metode baru yaitu segmentasi citra ikan tuna dengan otomatisasi parameter DBSCAN menggunakan jumlah titik puncak pada histogram, sehingga mendapatkan nilai parameter yang optimal untuk segmentasi dari setiap citra. Untuk mendukung hal tersebut, kami menggunakan Eps Spatial, Eps Color dan MinPts di algoritma DBSCAN. Parameter tersebut mengambil nilai dari jumlah titik puncak pada histogram dalam ruang warna yang berbeda. Hasil dari metode ini dapat melakukan segmentasi citra ikan tuna dibuktikan dengan 30 citra yang telah digunakan dan mendapatkan akurasi diatas 90&. Jadi ini dapat melakukan segmentasi tanpa mengetahui nilai parameter tersebut.
Co-Authors - Azhari AA Sudharmawan, AA Adenuar Purnomo Adhi Nurilham Adi Guna, I Gusti Agung Socrates Afrizal Laksita Akbar Ahmad Afiif Naufal Ahmad Reza Musthafa, Ahmad Reza Ahmad Syauqi Aida Muflichah Aidila Fitri Fitri Heddyanna Akira Asano Akira Taguchi Akwila Feliciano Alhaji Sheku Sankoh, Alhaji Sheku Alif Akbar Fitrawan, Alif Akbar Alifia Puspaningrum Alqis Rausanfita Amelia Devi Putri Ariyanto Aminul Wahib Aminul Wahib Aminul Wahib Ana Tsalitsatun Ni'mah Andi Baso Kaswar Andi Baso Kaswar Anindhita Sigit Nugroho Anindita Sigit Nugroho Anny Yunairti Anny Yuniarti Anto Satriyo Nugroho Arif Fadllullah Arif Mudi Priyatno Arifin, M. Jainal Arifzan Razak Arini Rosyadi Arrie Kurniawardhani Arya Widyadhana Arya Yudhi Wijaya Bagus Satria Wiguna Bagus Setya Rintyarna Baskoro Nugroho Bilqis Amaliah Chandranegara, Didih Rizki Chastine Fatichah Christian Sri kusuma Aditya, Christian Sri kusuma Cinthia Vairra Hudiyanti Cornelius Bagus Purnama Putra Daniel Sugianto Daniel Swanjaya Darlis Herumurti Dasrit Debora Kamudi Desepta Isna Ulumi Desmin Tuwohingide Dhian Kartika Diana Purwitasari Didih Rizki Chandranegara Dika Rizky Yunianto Dimas Fanny Hebrasianto Permadi Dini Adni Navastara, Dini Adni Dinial Utami Nurul Qomariah Dwi Ari Suryaningrum Dyah S. Rahayu Eha Renwi Astuti Endang Juliastuti Erliyah Nurul Jannah, Erliyah Nurul Ery Permana Yudha Eva Firdayanti Bisono Evan Tanuwijaya Evelyn Sierra Fahmi Syuhada Fahmi Syuhada Fandy Kuncoro Adianto Fathoni, Kholid Fiqey Indriati Eka Sari Gosario, Sony Gulpi Qorik Oktagalu Pratamasunu Gus Nanang Syaifuddiin Handayani Tjandrasa Hanif Affandi Hartanto Hudan Studiawan Humaira, Fitrah Maharani Humaira, Fitrah Maharani I Guna Adi Socrates I Gusti Agung Socrates Adi Guna I Made Widiartha I Putu Gede Hendra Suputra Indra Lukmana Irna Dwi Anggraeni Ismail Eko Prayitno Rozi Januar Adi Putra Kevin Christian Hadinata Khadijah F. Hayati Khairiyyah Nur Aisyah Khairiyyah Nur Aisyah, Khairiyyah Nur Khalid Khalid Khoirul Umam Kholid Fathoni Lafnidita Farosanti Laili Cahyani Lutfiani Ratna Dewi Luthfi Atikah M. Ali Fauzi M. Jainal Arifin Mamluatul Hani’ah Maulana, Hendra Maulana, Hendra Mika Parwita Moch Zawaruddin Abdullah Moh. Zikky Moh. Zikky, Moh. Mohammad Fatoni Anggris, Mohammad Fatoni Mohammad Sonhaji Akbar Muhamad Nasir Muhammad Bahrul Subkhi Muhammad Fikri Sunandar Muhammad Imron Rosadi Muhammad Imron Rosadi Muhammad Machmud Muhammad Mirza Muttaqi Muhammad Muharrom Al Haromainy Munjiah Nur Saadah Muttaqi, Muhammad Mirza Nahya Nur Nanang Fakhrur Rozi Nanik Suciati Nina Kadaritna Novi Nur Putriwijaya Novrindah Alvi Hasanah Nur, Nahya Nuraisa Novia Hidayati Nursanti Novi Arisa Nursuci Putri Husain Ozzy Secio Riza Pangestu Widodo, Pangestu Pasnur Pasnur Pasnur Pasnur Puji Budi Setia Asih Putri Damayanti Putri Nur Rahayu Putu Praba Santika Rangga Kusuma Dinata Rarasmaya Indraswari Ratri Enggar Pawening Renest Danardono Resti Ludviani Rigga Widar Atmagi Riyanarto Sarno Riza, Ozzy Secio Rizka Sholikah Rizka Wakhidatus Sholikah Rizqa Raaiqa Bintana Rizqi Okta Ekoputris Rosyadi, Ahmad Wahyu Ryfial Azhar, Ryfial Safhira Maharani Safri Adam Saiful Bahri Musa Salim Bin Usman Saputra, Wahyu Syaifullah Jauharis Satrio Verdianto Satrio Verdianto Setyawan, Dimas Ari Sherly Rosa Anggraeni Siprianus Septian Manek Sonny Christiano Gosaria Sugiyanto, Sugiyanto Suprijanto Suprijanto Suwanto Afiadi Syadza Anggraini Syuhada, Fahmi Takashi Nakamoto Tegar Palyus Fiqar Tesa Eranti Putri Tio Darmawan Umi Salamah Undang Rosidin Verdianto, Satrio Waluya, Onny Kartika Wanvy Arifha Saputra Wardhana, Septiyawan R. Wawan Gunawan Wawan Gunawan Wawan Gunawan Wawan Gunawan Wijayanti Nurul Khotimah Yudhi Diputra Yufis Azhar Yulia Niza Yunianto, Dika R. Zainal Abidin Zakiya Azizah Cahyaningtyas