IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 12, No 3: September 2023

Earthquake prediction technique: a comparative study

Abbas H. Hassin Alasadi (University of Basrah)
Kadhim Mahdi Hashim (Imam Ja'
afar Al-Sadiq University)



Article Info

Publish Date
01 Sep 2023

Abstract

Earthquakes are one of the most dangerous natural disasters facing humans because of their occurrence without warning and their impact on their lives and property. In addition, predicting seismic movement is one of the main research topics in seismic disaster prevention. In geological studies, scientists can predict and know the locations of earthquakes in the long term. Therefore, about 80% of the major global earthquakes lie along the Pacific Ring belt, known as the Ring of Fire. Machine learning methods have also been used for short-term earthquake prediction, and studies have applied the random forest method to determine the factors that precede earthquakes. The machine learning method was based on various decision trees, each of which predicted the time to the nearest oscillation. The third group of scientists used the hybrid prediction method, which combines machine learning and geological studies. This research deals with a review of most of the geological studies and machine learning techniques applied to earthquake data sets, which showed a total lack of prediction of potential earthquakes through one approach, so studies designed by geologists were combined with machine learning.

Copyrights © 2023






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...