Kadhim Mahdi Hashim
Imam Ja'afar Al-Sadiq University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Earthquake prediction in Iraq using machine learning techniques Nada Badr Jarah; Kadhim Mahdi Hashim; Abbas Hanon Hassin
Indonesian Journal of Electrical Engineering and Computer Science Vol 29, No 1: January 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v29.i1.pp322-329

Abstract

This study deals with addressing the scientific achievements and the history of earthquake prediction in Iraq, in addition to attempting to discuss the possibility of machine learning to predict earthquakes from a theoretical perspective. The idea of predicting earthquakes gives at least a little time to protect people and reduce earthquake damage. In Iraq, we notice an increase in the occurrence of earthquakes, especially in the southern regions, where they form a strange phenomenon because they are plain areas and far from the seismic fault line, due to the errors that accompany excessive oil extraction and in random and unstudied ways, and geological studies raise fears in predicting an increase in earthquakes for the coming years. We have explored the possibility of applying machine learning technology to predict earthquakes in Iraq, and follow-up recording of tremors at different stations in Iraq through three centers of seismic sensor networks. In addition to the earthquake catalog in Iraq (1900-2019). This study may pave the way for more research to develop an integrated and accurate earthquake prediction system using machine-learning technologies.
Earthquake prediction technique: a comparative study Abbas H. Hassin Alasadi; Kadhim Mahdi Hashim
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 12, No 3: September 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v12.i3.pp1026-1032

Abstract

Earthquakes are one of the most dangerous natural disasters facing humans because of their occurrence without warning and their impact on their lives and property. In addition, predicting seismic movement is one of the main research topics in seismic disaster prevention. In geological studies, scientists can predict and know the locations of earthquakes in the long term. Therefore, about 80% of the major global earthquakes lie along the Pacific Ring belt, known as the Ring of Fire. Machine learning methods have also been used for short-term earthquake prediction, and studies have applied the random forest method to determine the factors that precede earthquakes. The machine learning method was based on various decision trees, each of which predicted the time to the nearest oscillation. The third group of scientists used the hybrid prediction method, which combines machine learning and geological studies. This research deals with a review of most of the geological studies and machine learning techniques applied to earthquake data sets, which showed a total lack of prediction of potential earthquakes through one approach, so studies designed by geologists were combined with machine learning.