Online transportation is one of the transportation that is increasingly in demand by the public at this time. Grab is an online transportation application that has many users in Indonesia. However, this system certainly has many shortcomings that are felt by users. One way to find out user satisfaction and disappointment with the application is to do sentiment analysis. By analyzing the deficiencies of the application, the company can find out the shortcomings of the application and how to fix it. The purpose of this study is to compare the accuracy between the Support Vector Machine, Naive Bayes, and Logistic Regression algorithms by conducting sentiment analysis on Grab application review data. The results of the comparative test found that the Naive Bayes algorithm has the best performance compared to other classification algorithms with an accuracy obtained by the Naive Bayes algorithm of 88.5%, while the Support Vector Machine algorithm has the lowest accuracy with an accuracy of 85.5%. So it can be concluded that the Naive Bayes algorithm has a better value than the Logistic Regression and Support Vector Machine algorithms. Keywords: Grab, Support Vector Machine, Naive Bayes, Logistic Regression Transportasi online adalah salah satu transportasi yang semakin diminati masyarakat pada saat ini. Grab adalah alah satu aplikasi trasportasi online yang memiliki pengguna bisa dikatakan banyak di Indonesia. Namun dalam system ini pasti memiliki banyak kekurangan yang dirasakan penggunanya. Salah satu cara untuk mengetahui kepuasan dan kekecewaan pengguna terhadap aplikasi tersebut yaitu melakukan analisis sentimen. Dengan menganalisis kekurangan dari aplikasi perusahaan dapat mengetahui kekurangan dari aplikasi dan bagaimana cara memperbaikinya. Tujuan penelitian ini untuk mengetahui perbandingan keakurasian antara algoritma Support Vector Machine, Naive Bayes, dan Logistic Regression dengan melakukan analisis sentimen pada data ulasan aplikasi Grab . Hasil pengujian komparasi ditemukan bahwa algoritma Naive bayes memiliki kinerja terbaik dibandingkan algoritma klasifikasi lainnya dengan akurasi yang di dapat algoritma Naive bayes sebesar 88.5%, sedangkan algoritma Support Vector Machine memiliki akurasi terendah dengan akurasi sebesar 85.5%. Sehingga dapat disimpulkan bahwa algoritma Naive bayes memiliki nilai yang lebih baik dibandingkan algoritma Logistic Regression dan Support Vector Machine.Kata kunci: Grab, Support Vector Machine, Naive Bayes, Logistic Regression
Copyrights © 2023