Hello World
Vol. 2 No. 1 (2023): Edisi April

Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi

Putri Apriyani (STMIK IKMI Cirebon, Cirebon)
Arif Rinaldi Dikananda (STMIK IKMI Cirebon, Cirebon)
Irfan Ali (STMIK IKMI Cirebon, Cirebon)



Article Info

Publish Date
03 Mar 2023

Abstract

Di Indonesia, dengan prevalensi stunting sebesar 37,2%, naik dari 35,6% pada tahun 2019 dan 36,8% pada tahun 2020, masalah stunting masih menjadi masalah kesehatan masyarakat yang signifikan. Ketika seorang anak pendek (kerdil), panjang atau tinggi badannya di bawah normal untuk usianya. Stunting berdampak buruk pada masalah kesehatan mental, tingkat IQ rendah, infeksi menular, dan tumbuh kembang anak. Permasalahan yang ada di Desa Tegalwangi saat ini adalah orang tua dan kader posyandu masih belum memiliki pemahaman dasar tentang stunting balita,balita dengan kasus stunting teridentifikasi saat pertumbuhan dan perkembangannya tidak sesuai dengan usianya dan tidak ada pengelompokan data berdasarkan faktor tersebut. K-Means merupakan salah satu algoritma dalam data mining yang bisa digunakan untuk melakukan pengelompokan suatu data. Penggunaan algoritma K-Means pada penelitian dimana algoritma tersebut banyak dipakai oleh para peneliti sebagai proses klasterisasi untuk menentukan status stunting balita. Teknik pengumpulan data dalam penelitian ini yaitu teknik observasi pasif, dimana peneliti datang langsung ke tempat pelaksanaan Posyandu. Adapun data yang digunakan dalam penelitian ini sebanyak 395 dataset. Penelitian ini didukung dengan metode Knowledge Discovery In Databases (KDD) adalah keseluruhan proses non- trivial untuk mencari dan mengidentifikasi pola (pattern) dalam data. Tujuan dari penelitian ini adalah untuk mengetahui kelompok atau cluster status stunting balita yang didapat berdasarkan parameter usia, berat badan dan tinggi badan. Hasil dari penelitian ini adalah didapat jumlah cluster optimal dengan K=2.Untuk cluster 0 terdapat 392 balita yaitu Shanum, Rizka, Nurjanah dan lainnya, cluster 1 dengan terdapat 3 balita yaitu Ezra, M Abidza dan Abd Mahmud. Dengan jumlah total balita stunting 287 balita dan jumlah total balita status normal 108 balita dan nilai DBI yang paling optimal sebesar 0.007 dimana nilai tersebut mendekati 0 yang berarti klaster yang di evaluasi menghasilkan klaster yang baik.

Copyrights © 2023






Journal Info

Abbrev

hello_world

Publisher

Subject

Computer Science & IT

Description

Hello World Jurnal Ilmu Komputer merupakan jurnal yang membahas ilmu dibidang komputer, jurnal ini sebagai wadah untuk menuangkan hasil penelitian baik secara konseptual maupun teknis yang berkaitan dengan ilmu komputer. Hello World Jurnal terbit 4 kali dalam setahun yaitu pada bulan April, Juli, ...