Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Vol 8, No 1 (2023): Edisi Februari

Injection Attack Detection on Internet of Things Device with Machine Learning Method

Pohan, Mara Muda (Unknown)
Soewito, Benfano (Unknown)



Article Info

Publish Date
27 Feb 2023

Abstract

The Internet of Things (IoT) Industry is growing rapidly, security surrounding this Industry has to be upgraded. This study analyzes which machine learning performs the best in detecting Injection Attacks in IoT devices. The proposed machine learning methods includes Catboost, Decision Tree, Support Vector Machine (SVM), and Multilayer Perceptron (MLP). This study uses Edge-IIoTset dataset. The traffic data obtained in this dataset comes from 13 different types of IoT devices which contains 10 files with normal traffic and 14 files of attack traffics. This study takes normal traffic and injection attacks traffic from Edge-IIoTset. Results shows that Catboost machine learning model performs the best in terms of performance score with 0.95599 score in Accuracy, Precision, F1-Score, and recall score where as Decision Tree model performs the fastest with 0.09 seconds of runtime and achieving 0.93 score in the performance.

Copyrights © 2023






Journal Info

Abbrev

jurasik

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

JURASIK adalah jurnal yang diterbitkan oleh LPPM STIKOM Tunas Bangsa Pematangsiantar yang bertujuan untuk mewadahi penelitian di bidang Sistem Informasi dan Teknik Informatika. JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika) adalah jurnal ilmiah dalam ilmu komputer dan informasi yang ...