Abstrak - Selama semester pertama setiap mahasiswa Bagian akademik Fakultas Sains dan Teknologi Universitas Timor harus bekerja keras untuk mempelajari bagaimana melakukan penjadwalan dan penentuan mata kuliah. Namun, proses itu sendiri ditandai dengan permasalahan, dengan pengecualian fakta bahwa kelas bawaan dapat mengakibatkan pembubaran satu atau beberapa siswa. Alhasil, dikembangkanlah sebuah sistem yang dapat mengendalikan mata kuliah. Salah satu solusi tersebut menggunakan klasifikasi penambangan data. Data atribut mahasiswa seperti Nilai, IP, IPK, SKS, SKSK, dan Semester digunakan dalam proses klasifikasi, yang memungkinkan untuk prediksi tentang bagaimana mahasiswa tersebut akan mmengambil mata kuliah yang dimaksud. Indikator klasifiabilitas terdiri dari dua kelas yaitu “Ya” untuk mahasiswa yang meramal sukses dan “Tidak” untuk mahasiswa yang memprediksi gagal. Algoritma Naive Bayes Classification (NBC) digunakan untuk melakukan klasifikasi. Dataset training terdiri dari data semester ganjil tahun 2020 dan semester genap tahun 2021. Untuk pengujian, data dari semester 2022 tersedia. Tingkat akurasi prediksi mata kuliah Keamanan Sistem dan Data sebesar 21,21%, sedangkan akurasi prediksi mata kuliah Audit Sistem Informasisebesar 78,26%. Kedua mata kuliah ini terpilih sebagai bagian dari seleksi. Luaran artikel ini adalah dashboard yang menampilkan grafik hasil aktual dan prediksi untuk sejumlah kelas selama semester dan tahun berjalan.
Copyrights © 2023