eProceedings of Engineering
Vol 4, No 3 (2017): Desember, 2017

Text Dependent Speaker Verification Menggunakan I-vector Extraction Dan Gmm

Viko Adi Rahmawan (Telkom University)
Achmad Rizal (Telkom University)
Ratri Dwi Atmaja (Telkom University)



Article Info

Publish Date
01 Dec 2017

Abstract

Dibandingkan metode verifikasi identitas biometrik lain, speaker verification memiliki kelebihan yaitu telah banyaknya perangkat mikrofon tersemat pada berbagai perangkat. Hal tersebut tentu menarik karena memungkinkan untuk ditambahnya metode verifikasi ini melalui pembaruan perangkat lunak tanpa memerlukan perangkat keras lain. Penelitian mengenai speaker verification telah banyak dilakukan beriringan dengan penelitian speaker recognition lainnya. Speaker recognition biasanya menggunakan MFCC (Mel Frequency Cepstral Coefficients) untuk melakukan pengenalan suara. Dalam tugas akhir ini akan dilakukan pengetesan akurasi sebuah sistem Text-Dependent Speaker Verification (TD-SV) yang menggunakan i-vector extraction dan Gaussian Mixture Model (GMM). I-Vector extraction diketahui memiliki akurasi yang lebih baik pada aplikasi Speaker Recognition dibandingkan dengan MFCC. Penelitian ini dapat menunjukkan berapa besar akurasi TD-SV menggunakan i-vector extraction dan GMM. Mnggunakan i-vector extraction dan GMM, didapatkan False Rejection Rate sebesar 60%, False Acceptance Rate sebesar 0% dan Error Rate sebesar 12%.Kata kunci : text dependent speaker recognition, i-vector, gaussian mixture model

Copyrights © 2017






Journal Info

Abbrev

engineering

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

Merupakan media publikasi karya ilmiah lulusan Universitas Telkom yang berisi tentang kajian teknik. Karya Tulis ilmiah yang diunggah akan melalui prosedur pemeriksaan (reviewer) dan approval pembimbing ...