Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI)
Vol. 12 No. 1 (2023)

Effect of Word2Vec Weighting with CNN-BiLSTM Model on Emotion Classification

Merinda Lestandy (Muhammadiyah Malang University)
Abdurrahim (Universitas Islam Indonesia)



Article Info

Publish Date
31 Mar 2023

Abstract

Emotion is an element that can influence human behavior, which in turn influences a decision. Human emotion detection is useful in many areas, including the social environment and product quality. To evaluate and categorize emotions derived from text, a method is required. As a result, the CNN-BiLSTM model, a classification method, aids in the analysis of the text's emotional content. A word weighting technique employing word2vec as a word weighting will help the model. The CNN-BiLSTM model with Word2vec as a pre-trained model is being used in this study to find the findings with the highest accuracy. The information is split into two groups: training and testing, and it is categorized into six categories according to how each emotion manifests itself: surprise, sadness, rage, fear, love, and joy. The best outcome from the CNN-BiLSTM model's accuracy of emotion classification is 92.85%.

Copyrights © 2023






Journal Info

Abbrev

janapati

Publisher

Subject

Computer Science & IT Education Engineering

Description

Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) is a collection of scientific articles in the field of Informatics / ICT Education widely and the field of Information Technology, published and managed by Jurusan Pendidikan Teknik Informatika, Fakultas Teknik dan Kejuruan, Universitas ...