Building of Informatics, Technology and Science
Vol 4 No 4 (2023): March 2023

Method comparison of Naïve Bayes, Logistic Regression, and SVM for Analyzing Movie Reviews

Aziz, Muhammad Maulidan (Unknown)
Purbalaksono, Mahendra Dwifebri (Unknown)
Adiwijaya, Adiwijaya (Unknown)



Article Info

Publish Date
29 Mar 2023

Abstract

A film can be categorized as a successful film based on the reviews given by the critics. The reviews can range from professional critics to public reviews from the general audience. Due to a large number of reviews and opinions on a film, this study aims to create a sentiment analysis model and compare the methods used to analyze datasets from a movie review. Sentiment Analysis is a method for studying and analyzing opinions, then classifying these opinions into several classes. This research will use the Naïve Bayes method, Logistic Regression, and Support Vector Machine (SVM) to analyze film review data. The film review dataset used is a collection of film reviews taken from the Rotten Tomatoes website and will be pre-processed before implementing the Naïve Bayes, Logistic Regression, and SVM methods. The SVM classifier with 80:20 data splitting has the best performance, with a result of 99.4% accuracy score and 93.5% F1 score.

Copyrights © 2023






Journal Info

Abbrev

bits

Publisher

Subject

Computer Science & IT

Description

Building of Informatics, Technology and Science (BITS) is an open access media in publishing scientific articles that contain the results of research in information technology and computers. Paper that enters this journal will be checked for plagiarism and peer-rewiew first to maintain its quality. ...