Aziz, Muhammad Maulidan
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Method comparison of Naïve Bayes, Logistic Regression, and SVM for Analyzing Movie Reviews Aziz, Muhammad Maulidan; Purbalaksono, Mahendra Dwifebri; Adiwijaya, Adiwijaya
Building of Informatics, Technology and Science (BITS) Vol 4 No 4 (2023): March 2023
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i4.2644

Abstract

A film can be categorized as a successful film based on the reviews given by the critics. The reviews can range from professional critics to public reviews from the general audience. Due to a large number of reviews and opinions on a film, this study aims to create a sentiment analysis model and compare the methods used to analyze datasets from a movie review. Sentiment Analysis is a method for studying and analyzing opinions, then classifying these opinions into several classes. This research will use the Naïve Bayes method, Logistic Regression, and Support Vector Machine (SVM) to analyze film review data. The film review dataset used is a collection of film reviews taken from the Rotten Tomatoes website and will be pre-processed before implementing the Naïve Bayes, Logistic Regression, and SVM methods. The SVM classifier with 80:20 data splitting has the best performance, with a result of 99.4% accuracy score and 93.5% F1 score.