Euclid
Vol 5, No 2 (2018): EDISI JULI

PENERAPAN MODEL KLASIFIKASI REGRESI LOGISTIK, SUPPORT VECTOR MACHINE , CLASSIFICATION AND REGRESSION TREE TERHADAP DATA KEJADIAN DIFTERI DI PROVINSI JAWA BARAT

Hilman Dwi Anggana (Fakultas Rekayasa Industri-Universitas Telkom)



Article Info

Publish Date
11 Sep 2018

Abstract

Salah satu permasalahan yang dihadapi Jawa Barat selama beberapa waktu terakhir adalah adanya kejadian luar biasa (KLB) penyakit Difteri. Upaya preventif untuk mengurangi merebaknya wabah suatu penyakit harus terus dilakukan seperti program sosialisasi, vaksinasi dan karantina. Selain dengan program yang telah disebutkan, kajian suatu penyakit dengan menggunakan pemodelan klasifikasi secara statistika menjadi salah satu alternatif dalam mendukung early warning system (EWS) suatu kejadian penyakit. Pada penelitian ini dilakukan penerapan model klasifikasi regresi logistik, support vector machine (SVM) dan classification and regression tree (CART) terhadap data kejadian Difteri di provinsi  Jawa Barat. Hasil analisis menunjukkan bahwa model regresi logistik  merupakan model yang kurang tepat diterapkan diantara tiga pilihan model ini karena memiliki nilai AUC terendah (nilai AUC sekitar 50%), didukung oleh tingkat akurasi dan tingkat ketepatan model mengklasifikasikan kelas positif (sensitivity) yang rendah. Sementara itu model yang paling tepat diterapkan adalah model SVM karena memiliki nilai AUC tertinggi (nilai AUC jauh diatas 50%), didukung oleh tingkat akurasi dan tingkat sensitivity yang tinggi.

Copyrights © 2018






Journal Info

Abbrev

Euclid

Publisher

Subject

Education Mathematics Social Sciences

Description

The aim of Euclid, p-ISSN 2355-1712 and e-ISSN 2541-4453, is to provide a national forum for sharing, dissemination and discussion of research, experience and perspectives across a wide range of pure and applied mathematics, education, teaching, development, instruction, educational projects and ...