Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI)
Vol 9, No 2 (2023): June

Sentiment Analysis of Customers’ Review on Delivery Service Provider on Twitter Using Naive Bayes Classification

Ari Basuki (Industrial Engineering, University of Trunojoyo Madura)



Article Info

Publish Date
07 Jun 2023

Abstract

Customer evaluations on social media may help us remain competitive and comprehend our business's target market. By analysing consumer evaluations, a business owner can identify common themes, pain points, and desired features or enhancements.  By analysing customer feedback across multiple channels, such as social media, online reviews, and customer service interactions, businesses can rapidly identify any negative sentiment or potential brand damage. The contribution of our study is to evaluate the performance of the Naive Bayes method for classifying customer feedback on courier delivery services obtained via Twitter. The Naive Bayes algorithm is selected due to its simplicity, which facilitates efficient computation, suitability for large datasets, outstanding performance on text classification, and ability to manage high-dimensional data. In this investigation, the Naive Bayes classifier accuracy is 0.506, which is considered to be low.  According to our findings, the irrelevant feature classification resulting in an error throughout the categorization process. A large number of data appearance characteristics that do not correspond to the testing data category have been identified as a result of this occurrence.

Copyrights © 2023






Journal Info

Abbrev

JITEKI

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

JITEKI (Jurnal Ilmiah Teknik Elektro Komputer dan Informatika) is a peer-reviewed, scientific journal published by Universitas Ahmad Dahlan (UAD) in collaboration with Institute of Advanced Engineering and Science (IAES). The aim of this journal scope is 1) Control and Automation, 2) Electrical ...