International Journal of Enterprise Modelling
Vol. 17 No. 2 (2023): May: Enterprise Modelling

Optimizing dataset classification through hybrid grid partition and rough set method for fuzzy rule generation

Velo, Randrianja (Unknown)
Tamatave, Jérôme (Unknown)
Sahambala, Solofo (Unknown)



Article Info

Publish Date
30 May 2023

Abstract

This research presents a novel approach for optimizing dataset classification through the integration of a hybrid grid partition and rough set method for fuzzy rule generation. The objective is to improve classification accuracy and interpretability while effectively handling uncertainty in the dataset. The proposed approach combines grid partitioning, rough set theory, and fuzzy logic to identify relevant attributes within each grid cell, generate accurate fuzzy rules, and perform classification based on fuzzy inference. The research demonstrates the improved accuracy of the hybrid approach compared to traditional methods, along with enhanced interpretability of the generated fuzzy rules. The scalability and generalizability of the approach are validated through its application to a case example in customer churn prediction in the telecommunications industry. However, certain limitations, such as the selection of the partitioning scheme, computational complexity, and handling of missing data, need to be considered. Further research is required to address these limitations and benchmark the approach against state-of-the-art techniques. The proposed hybrid approach contributes to the field of dataset classification by offering an effective and interpretable methodology for improved classification performance and actionable insights in real-world applications

Copyrights © 2023






Journal Info

Abbrev

ieia

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Economics, Econometrics & Finance Engineering Industrial & Manufacturing Engineering Library & Information Science Mathematics Transportation

Description

The International Journal of Enterprise Modelling serves as a venue for anyone interested in business and management modelling. It investigates the conceptual forerunners and theoretical underpinnings that lead to research modelling procedures that inform research and ...