An effective sales strategy in the fashion retail business is essential to determine the success of the company or store. Like the Traffic Room store, which is a vintage fashion retail store that sells a variety of products. Although there are many products on sale, this store has not utilized sales data to determine product sales patterns, causing negative impacts such as there are still many products that are in short supply and products are not sold with predetermined targets. So the purpose of this study is t o determine product sales patterns in order to improve product inventory. To solve this problem, the analysis used is the K-Means algorithm to find product sales patterns assisted by the elbow method in determining the optimal cluster. As well as the flow in this research process is the CRISP-DM method with steps namely business understanding, data understanding, data preparation, modeling, evaluation and deployment. The results of this study obtained 4 clusters, namely cluster 2 or very in demand there are 2 products, cluster 3 or in demand there are 5 products, cluster 1 or quite in demand there are 5 products and cluster 4 or less in demand there are 3 products. The evaluation results get the optimal Sum of Square Error (SSE) value of 594,366.733 or 65.5%. From the evaluation results, it means that the performance of the K-Means algorithm used is good. Keywords: CRISP-DM, Elbow Method,K-Means Algorithm, Product Sales Pattern, Sum of Square Error (SSE) Abstrak Strategi penjualan yang efektif dalam bisnis ritel fashion sangatlah penting untuk menentukan keberhasilan perusahaan atau toko. Seperti toko Traffic Room yaitu toko ritel fashion vintage yang menjual berbagai macam produk. Walaupun banyaknya produk yang di jual, toko ini belum memanfaatkan data penjualan untuk menentukan pola penjualan produk sehingga menimbulkan dampak negatif seperti masih banyak produk yang kekurangan persediaan dan produk tidak terjual dengan target yang sudah ditentukan. Maka tujuan dari penelitian ini untuk mengetahui pola penjualan produk agar bisa memperbaiki persediaan produk. Untuk mengatasi permasalahan ini, analisis yang digunakan yaitu algoritma K-Means untuk mencari pola penjualan produk dibantu dengan metode elbow dalam menentukan cluster yang optimal. Serta yang menjadi alur dalam proses penelitian ini yaitu metode CRISP-DM dengan langkah-langkahnya yakni business understanding, data understanding, data preparation, modeling, evaluation dan deployment. Hasil dari penelitian ini mendapatkan 4 cluster yaitu cluster 2 atau sangat laris ada 2 produk, cluster 3 atau laris ada 5 produk, cluster 1 atau cukup laris ada 5 produk dan cluster 4 atau kurang laris ada 3 produk. Hasil evaluasi mendapatkan nilai Sum of Square Error (SSE) optimal yaitu 594.366,733 atau 65,5%. Dari hasil evaluasi artinya kinerja algoritma K-Means yang digunakan sudah baik. Kata kunci: Algoritma K-Means, CRISP-DM, Metode Elbow, Pola Penjualan Produk, Sum of Square Error (SSE)
Copyrights © 2023