JURNAL MEDIA INFORMATIKA BUDIDARMA
Vol 7, No 3 (2023): Juli 2023

Penerapan Algoritma Apriori dan FP-Growth Untuk Market Basket Analisis Pada Data Transaksi NonPromo

Andrew Aquila Chrisanto Pabendon (Universitas Kristen Satya Wacana, Salatiga)
Hindriyanto Dwi Purnomo (Universitas Kristen Satya Wacana, Salatiga)



Article Info

Publish Date
23 Jul 2023

Abstract

This research aims to find association rules based on the transactions of Aksesmu members on non-promo items. The method in this study uses Association rules using the a priori algorithm and FP-Growth to obtain Frequent Itemsets. The data analysis phase is carried out starting with Exploratory Data Analysis, Pre-Processing Data, Transformation Data, and Data Mining, to evaluate the results of the formed association rules. Researchers conducted 4 experiments with a minimum support of 0.02 and a minimum confidence of 0.25 on a priori and FP-Growth was the best by producing 52 frequent itemsets and 17 association rules. With a dataset of 379,635, a priori is faster in processing frequent itemsets with a time of 1.10 seconds while FP-Growth is with 1.86 seconds. Apriori and FP-Growth produce the same frequent itemset, namely the highest category is obtained by SKT with a support of 0.32 and SKM with a support of 0.26, but the best association rules are produced by the Extruded & Pellet and Sweetened Condensed Milk categories with a confidence of 0.47, which if items in the Extruded & Pellet category are purchased together with Sweetened Condensed Milk category items have a success rate of 47%.

Copyrights © 2023






Journal Info

Abbrev

mib

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering

Description

Decission Support System, Expert System, Informatics tecnique, Information System, Cryptography, Networking, Security, Computer Science, Image Processing, Artificial Inteligence, Steganography etc (related to informatics and computer ...