Jambura Journal of Mathematics
Vol 5, No 2: August 2023

Perluasan Masalah Isoperimetrik pada Bangun Ruang

Andri Setiawan (Institut Teknologi Bandung)
Denny Ivanal Hakim (Institut Teknologi Bandung)
Oki Neswan (Institut Teknologi Bandung)



Article Info

Publish Date
01 Aug 2023

Abstract

In this paper, several extensions of the isoperimetric problem in solid figures are explored, focusing on oblique and right prisms with rectangular, right-angled triangular, and regular hexagonal bases. The objective of this research is to find the prism with the largest volume while keeping the surface area constant. Through manipulations of algebra and simple trigonometry, evidence is obtained that a right prism provides a larger volume than an oblique prism if their surface areas are equal. By utilizing partial derivatives of a two-variable function and the Lagrange multiplier method, conditions for the side lengths are derived to obtain the prism with the maximum volume. The results show that a cube is the solution to the isoperimetric problem, meaning it has the largest volume among prisms with rectangular bases, while for the isoperimetric solution on prisms with right-angled triangular bases, the base of the prism must be an isosceles right-angled triangle. A regular hexagonal prism has a larger volume than prisms with rectangular and right-angled triangular bases if their surface areas are the same.

Copyrights © 2023






Journal Info

Abbrev

jjom

Publisher

Subject

Mathematics

Description

Jambura Journal of Mathematics (JJoM) is a peer-reviewed journal published by Department of Mathematics, State University of Gorontalo. This journal is available in print and online and highly respects the publication ethic and avoids any type of plagiarism. JJoM is intended as a communication forum ...