Civil Engineering Journal
Vol 9, No 9 (2023): September

Research on Rainfall Intensity Threshold of Occasional Debris Flow Based on Infiltration

Hanqiang Wang (Geological Team of Shandong Province Bureau of Geology and Mineral Resources, Jinan, 255100,)
Xiangpeng Ji (Geological Team of Shandong Province Bureau of Geology and Mineral Resources, Jinan, 255100,)
Yanping Wang (School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo, 255000,)



Article Info

Publish Date
01 Sep 2023

Abstract

The rainfall warning method for debris flows usually uses rainfall intensity and duration to establish an I-D relationship internationally and determine the rainfall warning threshold for debris flows. This method requires extensive rainfall data from debris flow events in the study area to establish the I-D relationship. However, some areas with occasional debris flows lack sufficient debris flow events to establish I-D relationships to determine rainfall warning thresholds. Therefore, this study uses the infiltration effect of water flow on gravel soil and establishes a rainfall intensity threshold judgment formula for debris flow initiation based on the limit equilibrium method. Taking the Taiqing debris flow that occurred in Laoshan, China, on June 13, 2018, as an example, the rainfall intensity and characteristics of the debris flow are analyzed. The maximum rainfall intensity during this rainfall process far exceeds the rainfall intensity threshold determined by the judgment formula. Using the judgment formula, it can be determined that the rainfall process will cause debris flow. The judgment result is consistent with the actual situation (where a debris flow occurred during the rainfall process). To further verify the accuracy of the judgment formula, the rainfall process of Typhoon Lichma on August 11, 2019, in the study area was analyzed. The rainfall process has a long history. Still, the rainfall intensity is much lower than the threshold of rainfall intensity for the initiation of debris flow, so this rainfall will not cause the occurrence of debris flow. The judgment result is consistent with the actual situation (no debris flow occurred during rains). Doi: 10.28991/CEJ-2023-09-09-02 Full Text: PDF

Copyrights © 2023






Journal Info

Abbrev

cej

Publisher

Subject

Civil Engineering, Building, Construction & Architecture

Description

Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, ...